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Vorwort

Das vorliegende Skript soll vorlesungsbegleitend dem Hörer das Abzeichnen bzw. Ab-
schreiben der Inhalte ersparen. Falls eine Vorlesungsstunde versäumt wurde, kann der
Hörer anhand des Skriptes ersehen, welcher Stoff z.B. mit einem Buch nachgeholt werden
sollte.

Bei allen Betrachtungen steht eine anschauliche Darstellung im Vordergrund. Es soll
versucht werden, dem Leser Hinweise zu geben, die ihm bei der Lösung der anstehenden
Problemstellungen nützlich sind.

Insbesondere wird darauf hingewiesen, dass für die Prüfung das selbständige Lösen der
Übungsaufgaben nicht nur empfohlen, sondern vorausgesetzt wird!

• Bronstein u.a.: Taschenbuch der Mathematik Edition Harri Deutsch

• Wilhelm Leupold u.a. : Mathematik - ein Studienbuch für Ingenieure. Band 1 Carl
Hanser Verlag

• L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Band 1 Verlag
Vieweg

• Harro Heuser: Lehrbuch der Analysis. Teil 1, Springer Verlag

• B. Neumayer, S. Kaup: Mathematik für Ingenieure 1, Shaker Verlag Aachen

• www.wolframalpha.com

Musterlösungen für die Übungsaufgaben, Formelsammlungen und Skript:

• www.Freiwilligschlauwerden.de
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KAPITEL 1
Vektorrechnung

1.1 Einführung

Physikalische Größen, wie Arbeit und Temperatur können durch eine Zahl beschrieben
werden. Kraft, Geschwindigkeit und das elektrische Feld in einem Punkt sind jedoch durch
ihren Betrag und ihre Richtung definiert.

Um hierfür ein mathematisches Werkzeug zu besitzen, wurden Vektoren eingeführt. Vek-
toren sind Größen, die durch Betrag und Richtung festgelegt sind. Mit Hilfe der Vektorrech-
nung können z.B. folgende Größen mathematisch beschrieben werden.

• Addition von Kräften
• Vervielfachung einer Geschwindigkeit
• Zerlegung eines Feldes

1.2 Definitionen

• Darstellung
Vektoren werden als Pfeile dargestellt und repräsentiert durch: a⃗, b⃗, c⃗
Bei Angabe des Anfangspunktes A und des Endpunktes B (Pfeilspitze), werden
Vektoren als #    »

AB dargestellt.

• Betrag eines Vektors
Der Betrag des Vektors entspricht der Länge des Pfeils. Für den Betrag des Vektors
a⃗ schreibt man |⃗a|

• Nullvektor
Ein Vektor mit Betrag 0, heißt Nullvektor: 0⃗

• Einheitsvektor
Ein Vektor mit Betrag 1 heißt Einheitsvektor.
Zu jedem Vektor a⃗ ̸= 0⃗ gibt es einen gleichgerichteten Einheitsvektor e⃗a = a⃗

|⃗a|
• Gleichheit

Zwei Vektoren heißen gleich, wenn sie in Betrag und Richtung übereinstimmen: a⃗ = b⃗

• Kolineariät
Zwei Vektoren heißen kolinear, wenn sie parallel oder antiparallel sind.

2
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• Vektoraddition

Zwei Vektoren a⃗ und b⃗ werden addiert, indem man den Vektor b⃗ an den Endpunkt
des Vektors a⃗ ansetzt. Der dann vom Anfang von a⃗ bis zum Ende von b⃗ führende
Vektor heißt der Summenvektor a⃗ + b⃗

Für die Vektoraddition gelten:

Kommutativgesetz: a⃗ + b⃗ = b⃗ + a⃗

Assoziativgesetz: a⃗ + ( b⃗ + c⃗ ) = ( a⃗ + b⃗ ) + c⃗

Dreiecksungleichung: |⃗a + b⃗| ≤ |⃗a| + |⃗b|

• Multiplikation mit einem Skalar

Ist λ ∈ R, dann ist λa⃗ ein Vektor, der parallel zu a⃗ ist und dessen Betrag das λ-fache
des Betrag von a⃗ ist.

Für die Multiplikation eines Vektors mit einem Skalar gelten:

Kommutativgesetz: λa⃗ = a⃗λ

Assoziativgesetz: λ(µa⃗) = (λµ)⃗a
Distributivgesetze: λ(⃗a + b⃗) = λa⃗ + λ⃗b

(λ + µ)⃗a = λa⃗ + µa⃗

1.3 Darstellung von Vektoren im Koordinatensystem

Zur rechnerischen Behandlung von Vektoren wird ein (zweiachsiges) dreiachsiges kartesisches
Koordinatensystem zugrunde gelegt.

Die Einheitsvektoren, deren Richtungen mit der positiven Richtung der x−, y− bzw. z-
Achse übereinstimmen, werden mit e⃗x, e⃗y, bzw. e⃗z bezeichnet. Sie werden Basisvektoren
genannt.

Jeder Vektor a⃗ ̸= 0⃗ kann eindeutig als Summe von Vielfachen der Basisvektoren dargestellt
werden:

a⃗ = axe⃗x + ay e⃗y + az e⃗z



4 1 Vektorrechnung

Da ein Vektor durch ein Zahlentripel ax, ay, az gegeben ist, kann auch umgekehrt ein
Zahlentripel als Vektor gedeutet werden. Es wird daher als Schreibweise für Vektoren meist
eine einspaltige Matrix verwendet:

a⃗ =


ax

ay

az



1.3.1 Basisvektoren

Für die Basisvektoren gilt:

e⃗x =


1
0
0

 , e⃗y =


0
1
0

 , e⃗z =


0
0
1



1.3.2 Betrag

Für den Betrag eines Vektors folgt nach dem Satz des Pythagoras:

|⃗a| =
√

a2
x + a2

y + a2
z

1.3.3 Gleichheit

Aus der Definition der Gleichheit von Vektoren folgt für zwei Vektoren

a⃗ = b⃗ ⇐⇒ ax = bx, ay = by, az = bz

1.3.4 Addition

Die Summe zweier Vektoren a⃗ und b⃗ berechnet sich als

a⃗ + b⃗ =


ax

ay

az

+


bx

by

bz

 =


ax + bx

ay + by

az + bz



1.3.5 Multiplikation mit einem Skalar

Für die Multiplikation eines Vektors mit einem Skalar erhält man:

λa⃗ =


λax

λay

λaz


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1.3.6 Verbindungsvektoren

Ein Vektor welcher zwei Punkte verbindet:

v⃗ = #    »

AB = b⃗ − a⃗ =


bx − ax

by − ay

bz − az


Vektoren sind im Gegensatz zu den Punkten im Raum nicht absolut . D.h. eine
vektorielle Größe ist nur in Bezug auf Länge und Richtung, jedoch nicht bezüglich seiner
Position im reellen Raum definiert.

Sei ABCD ein Quadrat mit den vier Punkten A, B, C und D, so gilt:

1.4 Lineare Abhängigkeit

1.4.1 Linearkombination:

Eine Linearkombination von endlich vielen Vektoren ist die Summe von beliebigen Vielfachen
dieser Vektoren. Die Vielfachen heißen Koeffizienten.

Z.B. ist
(

3
2

)
eine Linearkombination der Vektoren

(
1
1

)
und

(
1
0

)
, denn:

(
3
2

)
=

Jeder 2-dimensionale, bzw. 3-dimensionale Vektor ist durch eine Linearkombination der
Einheitsvektoren e⃗x, e⃗y bzw. e⃗x, e⃗y, e⃗z darstellbar.

Beispiel:

Der Vektor


3
4
5

 soll als Linearkombination der Vektoren


1
0
0

 ,


0
1
0

 und


0
0
1


geschrieben werden:

3
4
5

 =
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1.4.2 Lineare Abhängigkeit:

Vektoren a⃗1, a⃗2, ..., a⃗n heißen linear abhängig , wenn es Skalare α1, α2, ..., αn

gibt, die nicht alle Null sind, so dass die Bedingung

α1a⃗1 + α2a⃗2 + ... + αna⃗n = 0

erfüllt ist, d.h. einer der Vektoren ist als Linearkombination der anderen darstellbar.

1.4.3 Lineare Unabhängigkeit:

Vektoren a⃗1, a⃗2, ..., a⃗n heißen linear unabhängig , wenn die Bedingung

α1a⃗1 + α2a⃗2 + ... + αna⃗n = 0

nur für α1 = α2 = ... = αn = 0 erfüllt ist, d.h. keiner der Vektoren ist als Linearkombination
der anderen darstellbar.

Beispiele

Sind folgende Vektoren linear unabhängig?

1.

 1
0
0

 ,

 0
1
0

 ,

 0
0
1



2.

 2
1
1

 ,

 1
0
1

 ,

 3
1
2



3.

 3
2
1

 ,

 13
2
7

 ,

 12
8
4


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1.5 Skalarprodukt

1.5.1 Motivation

Berechnung der Arbeit in der Physik:

Ein Körper wird entlang der x-Achse bewegt, vom Ursprung bis nach s = 100 m. Hierfür
wird eine Kraft F = 5 N eingesetzt, die im Winkel von α = 30◦ zur x-Achse am Körper
zieht. Welche Arbeit wird hier verrichtet?

Die Arbeit ergibt sich zu:

W = |F⃗ |·cos(α) · |s⃗|

Das Skalarprodukt zwischen zwei Vektoren ist nun genau so definiert, dass man hier kurz

W = F⃗ · s⃗

schreiben kann.

Also ergibt sich für die Arbeit im Beispiel oben:

W = 5 N·cos(30◦) · 100 m ≈ 5 N·0.866·100 m= 433 Nm

1.5.2 Definition

Das Skalarprodukt zweier Vektoren ist definiert durch:

a⃗ · b⃗ = |⃗a| · |⃗b| cosφ

mit 0 ≤ φ ≤ 180o.

Das Ergebnis des Skalarprodukts ist, wie der Name sagt, ein Skalar, d.h. eine reelle
Zahl.

1.5.3 Eigenschaften

1. a⃗ · b⃗ = b⃗ · a⃗ Kommutativgesetz

2. a⃗ · (⃗b + c⃗) = a⃗ · b⃗ + a⃗ · c⃗ Distributivgesetz

3. a⃗ · a⃗ = |⃗a|2

4. a⃗ · b⃗ = 0 a⃗ ist senkrecht zu b⃗ (alternativ: a⃗ ⊥ b⃗)

5. e⃗x · e⃗x = 1, e⃗y · e⃗y = 1, e⃗z · e⃗z = 1

6. e⃗x · e⃗y = 0, e⃗y · e⃗z = 0, e⃗z · e⃗x = 0

7. a⃗ · e⃗x = ax, a⃗ · e⃗y = ay, a⃗ · e⃗z = az
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8. Der Winkel φ zwischen zwei Vektoren a⃗ und b⃗ berechnet sich aus

cosφ = a⃗

|⃗a|
· b⃗

|⃗b|

9. Die Projektionslänge ab eines Vektors a⃗ auf einen Vektor b⃗ hat folgende Größe:

ab = |⃗a|cosφ = a⃗ · b⃗

|⃗b|

1.5.4 Berechnung

Das Skalarprodukt zweier n-dimensionaler Vektoren berechnet sich zu

a⃗ ◦ b⃗ = a1b1 + a2b2... + anbn

denn:

a⃗ ◦ b⃗ = (a1e⃗1 + a2e⃗2 + ... + ane⃗n) ◦ (b1e⃗1 + b2e⃗2 + ... + bne⃗n)
= a1e⃗1 ◦ b1e⃗1 + a1e⃗1 ◦ b2e⃗2 + ... + a1e⃗1 ◦ bne⃗n+

a2e⃗2 ◦ b1e⃗1 + a2e⃗2 ◦ b2e⃗2 + ... + a2e⃗2 ◦ bne⃗n+
...
ane⃗n ◦ b1e⃗1 + ane⃗n ◦ b2e⃗2 + ... + ane⃗n ◦ bne⃗n

= a1b1 + a2b2... + anbn

1.6 Vektorprodukt

Das Vektorprodukt a⃗× b⃗ zweier Vektoren a⃗ und b⃗ ist nur im 3-dimensionalen Raum definiert.
Das Ergebnis ist wieder ein Vektor, daher der Name Vektorprodukt. Gelegentlich wird das
Vektorprodukt auch als Kreuzprodukt bezeichnet, da es durch ein Kreuz symbolisiert wird.
Folgende physikalische Größen sind als Vektorprodukt darstellbar:

• Drehmoment einer an einem starren Körper angreifenden Kraft

• Drehimpuls eines rotierenden Körpers

• Kraft auf einen stromdurchflossenen Leiter im Magnetfeld
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1.6.1 Motivation

Berechnung des Drehmoments in der Physik: An einem an einer Achse befestigter Hebel
der Länge s = 100 m greift eine Kraft F = 5 N an, die im Winkel von α = 30◦ zum Hebel
nach unten zieht. Welches Drehmoment tritt auf?

Das Drehmoment ist ein Vektor, der in das Blatt hinein zeigt und eine Länge hat, die dem
Flächeninhalt des Parallelogramms zwischen s⃗ und F⃗ entspricht.

|M⃗ | = |F⃗ |·sin(α) · |s⃗|

⇒ M = 5 N·sin(30◦) · 100 m = 5 N·0.5·100 m= 250 Nm

Das Vektorprodukt zwischen zwei Vektoren ist nun genau so definiert, dass man hier kurz

M⃗ = s⃗ × F⃗ schreiben kann.

1.6.2 Definition

Das Vektorprodukt c⃗ = a⃗ × b⃗ ist ein Vektor c⃗ mit folgenden Eigenschaften:

• |⃗c| ist gleich dem Flächeninhalt des von a⃗ und b⃗ aufgespannten Parallelogramms:

|⃗c| = |⃗a||⃗b|sinφ (0◦ ≤ φ ≤ 180◦)

• c⃗ steht sowohl auf a⃗ als auch auf b⃗ senkrecht, d.h.

c⃗ · a⃗ = c⃗ · b⃗ = 0

• Die Richtung von c⃗ ist so festgelegt, dass a⃗, b⃗ und c⃗ ein Rechtssystem
bilden.

Rechtssystem:

Als Rechtssystem wird ein System aus drei Vektoren im 3-dimensionalen Raum bezeichnet,
wenn diese der Rechten-Hand-Regel entsprechen, d.h.

• Daumen in Richtung des ersten Vektors

• Zeigefinger in Richtung des zweiten Vektors

• Mittelfinger (rechtwinklig zum Daumen und Zeigefinger abgespreizt) zeigt bei einem
Rechtssystem in Richtung des dritten Vektors



10 1 Vektorrechnung

1.6.3 Regeln

• a⃗ × 0⃗ = 0⃗

• a⃗ × a⃗ = 0⃗

• a⃗ × b⃗ = 0⃗
Kolinearität (⃗a, b⃗ parallel oder antiparallel, a⃗ || b⃗)

• a⃗ × (⃗b + c⃗) = a⃗ × b⃗ + a⃗ × c⃗
(⃗a + b⃗) × c⃗ = a⃗ × c⃗ + b⃗ × c⃗
Distributivgesetze

• (λa⃗) × b⃗ = λ(⃗a × b⃗) = a⃗ × (λ⃗b) für alle λ ∈ R
Assoziativgesetz

• a⃗ × b⃗ = −(⃗b × a⃗)
antikommutativ

• e⃗x × e⃗y = e⃗z

• Lagrange-Identität:

(⃗a × b⃗) ◦ (c⃗ × d⃗) = (⃗a ◦ c⃗) ◦ (⃗b ◦ d⃗) − (⃗b ◦ c⃗) ◦ (⃗a ◦ d⃗)

1.6.4 Berechnung

Das Vektorprodukt zweier 3-dimensionaler Vektoren berechnet sich zu

a⃗ × b⃗ =


a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1



Merkregel:

Beispiele:

1.

 2
4
1

×

 3
−2
1

 =

2.

 −2
−1
2

×

 2
2
0

 =
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Beweis:

a⃗ × b⃗ = (a1e⃗1 + a2e⃗2 + a3e⃗3) × (b1e⃗1 + b2e⃗2 + b3e⃗3)

= a1e⃗1 × b1e⃗1 + a1e⃗1 × b2e⃗2 + a1e⃗1 × b3e⃗3+ NR. e⃗n × e⃗n = 0
a2e⃗2 × b1e⃗1 + a2e⃗2 × b2e⃗2 + a2e⃗2 × b3e⃗3+ e⃗3 = e⃗1 × e⃗2

a3e⃗3 × b1e⃗1 + a3e⃗3 × b2e⃗2 + a3e⃗3 × b3e⃗3 −e⃗2 = e⃗1 × e⃗3

e⃗1 = e⃗2 × e⃗3

= 0 + a1b2e⃗3 − a1b3e⃗2 −e⃗3 = e⃗2 × e⃗1

− a2b1e⃗3 + 0 + a2b3e⃗1 e⃗2 = e⃗3 × e⃗1

+ a3b1e⃗2 − a3b2e⃗1 + 0 −e⃗1 = e⃗3 × e⃗2

= (a2b3 − a3b2)e⃗1 + (a3b1 − a1b3)e⃗2 + (a1b2 − a2b1)e⃗3

= a⃗ × b⃗ =


a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1



1.7 Spatprodukt

Vektor- und Skalarprodukt sind über das Spatprodukt miteinander verknüpft. Das Spatpro-
dukt ist das Ergebnis aus dem Vektorprodukt zweier Vektoren und dem Skalarprodukt mit
einem dritten Vektor. Es beschreibt die Größe des orientierten Volumens des Paral-
lelepipeds (Spat), das durch die drei Vektoren aufgespannt wird.

Unter orientiertem Volumen versteht man dabei das Volumen multipliziert mit dem Faktor
+1, falls die Vektoren ein Rechtssystem bilden, und multipliziert mit -1, falls sie ein
Linkssystem bilden.

1.7.1 Definition

Das Spatprodukt dreier 3-dimensionaler Vektoren ist ein Skalar mit

a⃗, b⃗, c⃗ 7→ (⃗a × b⃗) ◦ c⃗ ∈ R

1.7.2 geometrische Herleitung

Das Volumen eines Spats errechnet sich aus dem Produkt seiner Grundfläche und seiner
Höhe.

V = Ah

Bekanntlich ist das Vektorprodukt a⃗ × b⃗ genau der Normalenvektor auf der durch a⃗ und b⃗
aufgespannten Grundfläche und dessen Betrag gleich dem Flächeninhalt dieser Fläche, also
A = |⃗a × b⃗|.
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Die Höhe des Spats ist die Projektion des Vektors c⃗ auf die Richtung des Normalenvektors n⃗,
bzw. des Einheitsnormalenvektors n⃗0.

Es folgt:

V = Ah = |⃗a × b⃗|
(

a⃗ × b⃗

|⃗a × b⃗|︸ ︷︷ ︸
n⃗0

◦ c⃗

)
= (⃗a × b⃗) ◦ c⃗ = [⃗a b⃗ c⃗]

Das Spatprodukt gibt das orientierte Volumen des Spats an.

Einfache Berechnung:

Spatprodukt = Wert der Determinante

(⃗a × b⃗) ◦ c⃗ =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣ = a1 · b2 · c3 + b1 · c2 · a3 + c1 · a2 · b3 − c1 · b2 · a3 − a1 · c2 · b3 − b1 · a2 · c3

→ siehe Determinanten im nächsten Kapitel.

Beispiel:

a⃗ =

 3
−3

4

 b⃗ =

 −4
−7

2

 c⃗ =

 7
2
2


Spatprodukt: (⃗a × b⃗) ◦ c⃗ Determinante D
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Es gilt:

(⃗a × b⃗) ◦ c⃗ > 0 ⇐⇒ a⃗, b⃗, c⃗ bilden ein Rechtssystem

(⃗a × b⃗) ◦ c⃗ < 0 ⇐⇒ a⃗, b⃗, c⃗ bilden ein Linkssystem

(⃗a × b⃗) ◦ c⃗ = 0 ⇐⇒ a⃗, b⃗, c⃗ sind linear abhängig ⇒ einfacher Test!

Beispiel:

Bilden die folgenden 3 Vekoren ein Rechtssystem und sind sie linear abhängig?

a⃗ =

 3
−3

4

 b⃗ =

 −4
−7

2

 c⃗ =

 7
2
2



1.7.3 Regeln

• (⃗a× b⃗)◦ c⃗ = (⃗b× c⃗)◦ a⃗ = (c⃗× a⃗)◦ b⃗ ⇒ zyklische Vertauschung der Vektoren

• (⃗a × b⃗) ◦ c⃗ = −(⃗b × a⃗) ◦ c⃗

• (⃗a × a⃗) ◦ b⃗ = 0

• Assoziativgesetz: (λa⃗ × b⃗) ◦ c⃗ = λ(⃗a × b⃗) ◦ c⃗

• Distributivgesetz: (⃗a × b⃗) ◦ (c⃗ + d⃗) = (⃗a × b⃗) ◦ c⃗ + (⃗a × b⃗) ◦ d⃗
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1.8 Anwendungen in der Geometrie

Mit Hilfe der Vektorrechnung lassen sich im 3-dimensionalen Raum einfach Geraden und
Ebenen sowie ihre relativen Lagen vektoriell beschreiben.

1.8.1 Geradengleichungen

Punkt-Richtungs-Form

Eine Gerade im R3 durch einen Punkt X0 und mit einem Richtungsvektor a⃗ ist gegeben durch:

x⃗ = x⃗0 + λa⃗ mit λ ∈ R

Hierbei ist x⃗ der Ortsvektor zu den Punkten X der Geraden.

Beispiel:

Bestimmen Sie die Gleichung der Geraden durch den Punkt (3| − 2|1) in Richtung

 5
2
3

.

2 Punkteform

Eine Gerade im R3 durch zwei Punkte X1 und X2 ist gegeben durch:

x⃗ = x⃗1 + λ(x⃗2 − x⃗1) mit λ ∈ R

Hierbei ist x⃗ der Ortsvektor zu den Punkten X der Geraden.

Beispiel:

Bestimmen Sie die Gleichung der Geraden durch die Punkte (1|1|1) und (2|0|4).
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1.8.2 Ebenengleichungen

Parameterform

Eine Ebene im R3 durch einen Punkt X0 und mit zwei linear unabhängigen Richtungsvek-
toren a⃗ und b⃗ ist gegeben durch:

x⃗ = x⃗0 + λa⃗ + µ⃗b mit λ, µ ∈ R

Hierbei ist x⃗ der Ortsvektor zu den Punkten X der Ebene.

Normalform

Eine Ebene im R3 durch einen Punkt X0 und mit einem Vektor n⃗ , senkrecht zur Ebene,
ist gegeben durch:

n⃗ ◦ (x⃗ − x⃗0) = 0

Koordinatenform

Durch

ax + by + cz = d

ist eine Ebene im R3 gegeben.

Beispiel:

Bestimmen Sie einen Normalenvektor zur Ebene, gegeben durch x1 + 2x2 − 3x3 = 5.
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1.8.3 Abstandsbestimmungen

Abstand zweier Punkte:

Der Abstand zweier Punkte X1 und X2 im R3 oder im R2 ist:

d = |x⃗2 − x⃗1|

Beispiel:

Bestimmen Sie den Abstand zwischen den Punkten (2|-5|3) und (2|-1|0).

Abstand zwischen Punkt und Gerade:

Der Abstand zwischen einem Punkt X1 und einer Gerade x⃗ = x⃗0 + λa⃗ im R3 ist:

d = |(x⃗1 − x⃗0) × a⃗|
|⃗a|

Beispiel:

Die Gleichung einer Geraden lautet

x⃗ =

 1
0
1

+ λ

 2
5
2

. Bestimmen Sie den Abstand des Punktes (5|3|-2) von dieser Geraden.
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Abstand zwischen zwei Geraden

Zwei Geraden im R3 können zueinander folgendermaßen liegen:

Abhängig von dieser Lage wird der Abstand bestimmt:

Für zwei nicht parallele Geraden, die sich schneiden, berechnet sich der Schnittpunkt

x⃗1 + λ1a⃗1 = x⃗2 + λ2a⃗2

und der Schnittwinkel:

a⃗1 ◦ a⃗2 = |a⃗1||a⃗2|cosφ

Der Abstand zweier paralleler Geraden mit den Gleichungen

x⃗ = x⃗1 + λ1a⃗ und x⃗ = x⃗2 + λ2a⃗

d = |(x⃗2 − x⃗1) × a⃗|
|⃗a|

Der Abstand zweier windschiefer Geraden mit den Gleichungen

x⃗ = x⃗1 + λ1a⃗1 und x⃗ = x⃗2 + λ2a⃗2 ist:

d = |(x⃗2 − x⃗1) ◦ (a⃗1 × a⃗2)|
|(a⃗1 × a⃗2)|

Beispiel:

Gegeben sei g1 := x⃗ = (−1|3| − 1) + λ1(−2|3|1) und g2 : x⃗ = (5| − 2| − 3) + λ2(−8|4|2)
Untersuchen Sie, ob g1 und g2 gemeinsame Punkte haben und bestimmen Sie ggf. den
Schnittpunkt.
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Abstand zwischen Punkt und Ebene

Der Abstand zwischen einem Punkt X1 und einer Ebene in Normalform

n⃗ ◦ (x⃗ − x⃗0) = 0 ist:

d = |n⃗ ◦ (x⃗1 − x⃗0)|
|n⃗|

= |n⃗0 ◦ (x⃗1 − x⃗0)| Hessesche Normalform
(
mit n⃗0 = n⃗

|n⃗|

)

Beispiel:

Die Ebene E enthält den Punkt (1|0|9) und ihr Normalenvektor ist n⃗ =

 1
3
5


Bestimmen Sie den Abstand des Punktes (-2|1|3) von dieser Ebene.
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Abstand zwischen einer Geraden und einer Ebene

Eine Gerade und eine Ebene können

1. sich in einem Punkt schneiden, d.h. der Richtungsvektor der Geraden ist nicht
senkrecht zum Normalenvektor der Ebene

2. parallel liegen, d.h. der Richtungsvektor der Geraden und der Normalenvektor der
Ebene sind senkrecht

3. in einer Ebene liegen

Abhängig von dieser Lage wird der Abstand bestimmt:

Für eine Gerade x⃗ = x⃗1 + λa⃗ und eine Ebene n⃗ ◦ (x⃗ − x⃗0) = 0 , die sich schneiden,

berechnet sich der Schnittpunkt aus:

S = x⃗1 +
(

n⃗ ◦ (x⃗0 − x⃗1)
n⃗ ◦ a⃗

)
· a⃗

und der Schnittwinkel zu:

φ =arcsin |n⃗ ◦ a⃗|
|n⃗||⃗a|

Der Abstand zwischen einer Geraden mit der Gleichung

x⃗ = x⃗1 + λa⃗

und einer zu ihr parallel liegenden Ebene mit der Gleichung

n⃗ ◦ (x⃗ − x⃗0) = 0 ist:

d = |n⃗ ◦ (x⃗1 − x⃗0)|
|n⃗|
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Abstand zwischen zwei Ebenen

Zwei Ebenen können

1. parallel liegen, d.h. die Normalenvektoren sind linear abhängig

2. identisch sein

3. sich in einer Geraden schneiden, d.h. die Normalenvektoren sind nicht linear abhängig

Abhängig von dieser Lage wird der Abstand bestimmt:

Der Abstand zweier paralleler Ebenen mit den Gleichungen

n⃗1 ◦ (x⃗ − x⃗1) = 0 und n⃗2 ◦ (x⃗ − x⃗2) = 0 ist:

d = |n⃗1 ◦ (x⃗2 − x⃗1)|
|n⃗1|

Zwei Ebenen, deren Normalenvektoren nicht linear abhängig sind, schneiden sich
in einer Geraden. Für die beiden Ebenen mit den Gleichungen

n⃗1◦(x⃗−x⃗1) = 0 und n⃗2◦(x⃗−x⃗2) = 0 lässt sich die Schnittgerade und der Schnittwinkel
berechnen:

Die Schnittgerade ergibt sich aus:

x⃗ = x⃗0 + λa⃗ mit

a⃗ = n⃗1 × n⃗2

und

n⃗1 ◦ (x⃗0 − x⃗1) = 0 und n⃗2 ◦ (x⃗0 − x⃗2) = 0

Der Schnittwinkel ergibt sich zu:

cosφ = n⃗1 ◦ n⃗2
|n⃗1||n⃗2|



KAPITEL 2
Matrizen und Determinanten

2.1 Matrizen

2.1.1 Einführung

Eine Matrix ist ein Werkzeug, mit dessen Hilfe lineare Zusammenhänge zwischen vielen
Variablen übersichtlich geschrieben und umgeformt werden können. Eine Matrix ist eine
Tabelle von Zahlen oder anderen Größen.

Zum Beispiel können die Koeffizienten des Gleichungssystems:

2u + 5v − 3w − x + 3y + 7z = 0
5u − v + x + 2y − 5z = 0
4v − 2w + 3x − y + 2z = 0

in folgender Gestalt (Matrix) zusammengefasst werden: 2 5 −3 −1 3 7
5 −1 0 1 2 −5
0 4 −2 3 −1 2

∣∣∣∣∣∣∣
0
0
0



2.1.2 Definitionen

Matrix

Unter einer Matrix vom Typ m×n versteht man ein geordnetes Schema von m·n Zahlen, die
in m Zeilen und n Spalten dargestellt sind. Die Zahlen nennt man die Elemente der Matrix.
Matrizen werden meist durch Großbuchstaben abgekürzt.

A = (amn) =



a11 a12 ... a1k ... a1n

a21 a22 ... a2k ... a2n

... ... ... ... ... ...
aj1 aj2 ... ajk ... ajn

... ... ::: ... ... ...
am1 am2 ... amk ... amn


heißt m × n-Matrix.

Das Element ajk steht in der j-ten Zeile und der k-ten Spalte.

21
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Die Elemente der Matrix können reell oder komplex sein. Im Folgenden betrachten wir
jedoch nur Matrizen mit reellen Elementen.

Beispiele:

1. A =
(

2 5 −3 1 3 7
)

ist eine 1 × 6 -Matrix.

2. A =
(

1
)

ist eine 1 × 1 -Matrix.

3. A =

 1
0
1

 ist eine 3 × 1 -Matrix.

4. A =
(

1 2 4 0
2 0 1 5

)
ist eine 2 × 4 -Matrix.

Quadratische Matrix:

Eine Matrix mit m = n heißt quadratische Matrix.

Transponierte Matrix:

Die zu einer gegebenen Matrix A transponierte Matrix AT entsteht aus A durch
Vertauschen der Zeilen und Spalten.

Beispiel:

A =

 1 4 7
2 5 8
3 6 9

 AT =

Diagonalmatrix

Eine quadratische n × n-Matrix A heißt Diagonalmatrix, wenn nur die Diagonalelemente
akk für k = 1,..,n ungleich 0 sind.

Beispiel:

A =

Einheitsmatrix

Eine Diagonalmatrix mit aik = 1 für k = i und aik = 0 für k ̸= i heißt Einheitsmatrix En.

En =
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Dreiecksmatrix

Eine quadratische Matrix heißt untere Dreiecksmatrix, wenn alle Elemente oberhalb
der Diagonalen 0 sind: aik = 0 für i < k.

Eine quadratische Matrix heißt obere Dreiecksmatrix, wenn alle Elemente unterhalb
der Diagonalen 0 sind: aik = 0 für i > k.

Beispiele: Je eine untere und eine obere Dreiecksmatrix:

Au0 =

Ao0 =

Symmetrische Matrix

Eine quadratische n × n-Matrix heißt symmetrisch, wenn

aik = aki für alle i,k = 1,...n

gilt.

Beispiel:

As =

2.1.3 Rechenoperationen

Gleichheit

Zwei m × n-Matrizen sind gleich, d.h. A = B, falls

aik = bik für alle i = 1..m und k = 1..n gilt.

Addition

Zwei m × n-Matrizen A und B werden addiert, indem man die entsprechenden Matrixele-
mente addiert

A+B = C = (cik) mit cik = aik +bik für alle i,k = 1,...n

Beispiel:

A =
(

1 5 3
4 0 8

)
, B =

(
5 1 3
1 4 7

)
=⇒ A + B =
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Multiplikation mit einem Skalar

Eine m × n-Matrix A wird mit einem Skalar λ ∈ R multipliziert, indem man jedes
Matrixelemente mit dem Skalar multipliziert.

λA = (λaik)

Beispiel:

A =
(

1 5 3
4 0 8

)
=⇒ 4 · A =

Multiplikation zweier Matrizen

Eine m × n-Matrix A wird mit einer n × p-Matrix B multipliziert, indem man jede Zeile
der Matrix A mit jeder Spalte der Matrix B multipliziert.

Das Ergebnis C = A · B ist eine m × p-Matrix mit

cik =
m∑

j=1
aijbjk = ai1b1k + ai2b2k + ... + ainbnk

A · B = C

Typen: m × n n × p m × p

Typverträglichkeit: Spaltenzahl links = Zeilenzahl rechts

Falksches Schema:


b11 ... b1k ... b1p

a21 ... b2k ... b2p

... ... ... ... ...
bn1 ... bnk ... bnp




a11 a12 ... a1n

... ... ... ...
ai1 ai2 ... ain

... ... ... ...
am1 am2 ... amn




c11 c12 ... c1p

... ... ... ...
ci1 cik ... cip

... ... ... ...
cm1 cm2 ... cmp


Zeile mal Spalte:
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Beispiel:

A =
(

1 −3 2
0 2 1

)
, B =

 1
5
4



AB =

BA =

2.1.4 Rechenregeln

1. Assoziativgesetz: (A + B) + C = A + (B + C)

A(BC) = (AB)C

2. Kommutativgesetz der Addition: A + B = B + A

Kommutativgesetz der Multiplikation gilt nicht,
im allgemeinen ist AB ̸= BA. Z.B.:

A =

 1 4 −2
0 1 1

−3 2 5

, B =

 3 0 1
−2 1 5
2 3 8


3. Distributivgesetz: λ(A + B) = λA + λB

A(B + C) = AB + AC

(A + B)C = AC + BC

4. Transponieren: (A + B)T = AT + BT

(λA)T = λAT

(AB)T = BT AT

5. AE = A

6. EA = A

7. AB = 0 ⇏ A = 0 oder B = 0, denn z.B.:

A =
(

1 2
3 6

)
, B =

(
10 4
−5 −2

)
=⇒ A · B =
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8. AB = AC und A ̸= 0 ⇏ B = C, denn z.B.:

A =
(

1 2
3 6

)
, B =

(
10 4
−5 −2

)
, C =

(
0 0
0 0

)

2.2 Determinanten

Eine Determinante ist eine spezielle Funktion, die einer quadratischen Matrix eine
Zahl zuordnet.

• Mit Hilfe von Determinanten kann man feststellen, ob ein lineares Gleichungssystem
eindeutig lösbar ist.

• Das Vorzeichen der Determinante einer Vektorbasis, gibt die Orientierung der Vektoren an

• Determinanten werden zur Berechnung von Volumina in der Vektorrechnung verwendet

2.2.1 Definition

Eine Determinante ist eine Funktion auf quadratischen n×n-Matrizen A:

det: A → det(A) = |A| ∈ R die folgendermaßen berechnet wird:

Regel von Sarrus

Mit der Regel von Sarrus kann man sich die Gleichungen bis n ≤ 3 sehr einfach herleiten.
Dabei schreibt man die ersten beiden Spalten der Matrix rechts neben die Matrix und bildet
Produkte von je 3 Zahlen, die durch die schrägen Linien verbunden sind. Dann werden die
von links oben nach rechts unten verlaufenden Produkte addiert und davon die von links
unten nach rechts oben verlaufenden Produkte subtrahiert.
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Beispiel:∣∣∣∣∣∣∣
4 −5 1
0 4 2
1 −2 3

∣∣∣∣∣∣∣ =
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Für n > 3 :
a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann


Man entwickelt die Determinante ”nach einer Zeile oder einer Spalte”:

|A| =
n∑

i=1
(−1)i+jaij |Aij | (Entwicklung nach der j-ten Spalte)

|A| =
n∑

j=1
(−1)i+jaij |Aij | (Entwicklung nach der i−ten Zeile)

wobei Aij die (n − 1) × (n − 1)-Untermatrix von A ist, die durch Streichen der i-ten Zeile
und j-ten Spalte entsteht.

Vorzeichenschema

Beispiel:∣∣∣∣∣∣∣
4 −5 1
0 4 2
1 −2 3

∣∣∣∣∣∣∣ =

2.2.2 Eigenschaften

Für quadratische Matrizen A und B gilt:

1. |A| = |AT |, d.h. der Wert einer Determinante ändert sich nicht, wenn Zeilen und
Spalten vertauscht werden.

Beispiel:
∣∣∣∣∣ 8 5

3 2

∣∣∣∣∣ =
∣∣∣∣∣ 8 3

5 2

∣∣∣∣∣ =

2. Bei Vertauschen zweier Zeilen (oder Spalten) ändert die Determinante ihr Vorzeichen

Beispiel:
∣∣∣∣∣ 7 3

4 −1

∣∣∣∣∣ =
∣∣∣∣∣ 3 7

−1 4

∣∣∣∣∣ =

3. Werden alle Elemente einer beliebigen Zeile (oder Spalte) einer Determinante mit
einem Skalar λ multipliziert, so multipliziert sich die Determinante mit λ.

Beispiel:

∣∣∣∣∣∣∣
λ 1 1
λ 0 1
λ 1 0

∣∣∣∣∣∣∣ =
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4. |λA| = λn|A|
d.h. wird eine n × n-Matrix A mit λ multipliziert, so multipliziert sich ihre Determi-
nante mit λn.

Beispiel: λA =

 λ λ λ
λ 0 λ
λ λ 0


5. Der Wert einer Determinante ändert sich nicht, wenn man zu einer Zeile (oder Spalte)

ein beliebig Vielfaches einer anderen Zeile (oder Spalte) elementweise addiert.

Beispiel: Addieren Sie zur 1. Zeile von
∣∣∣∣∣ −6 5

1 4

∣∣∣∣∣ das 6-fache der 2. Zeile

6. Für zwei Matrizen A,B gleicher Größe gilt:
|AB| = |A||B|
|AB| = |BA|

Beispiel: Nachweis von |AB| = |A||B| für n = 2

7. |An| = |A|n für n ∈ N

8. Die Determinante einer n × n-Dreiecksmatrix A besitzt den Wert
|A| = a11a22a33...ann

9. Eine Determinante besitzt den Wert 0, wenn sie eine der folgenden Bedingungen
erfüllt:

• alle Elemente einer Zeile (oder Spalte) sind 0

Beispiel:

∣∣∣∣∣∣∣
1 1 3
0 0 0
4 5 3

∣∣∣∣∣∣∣ = 0

• zwei Zeilen (oder Spalten) sind gleich

Beispiel:

∣∣∣∣∣∣∣
4 0 4
1 3 1
5 1 5

∣∣∣∣∣∣∣ = 0

• zwei Zeilen (oder Spalten) sind zueinander proportional

Beispiel:

∣∣∣∣∣∣∣∣∣
1 4 1 0
5 20 5 0
1 1 2 3
1 0 1 1

∣∣∣∣∣∣∣∣∣ = 0

• eine Zeile (oder Spalte) ist als Linearkombination der übrigen Zeilen ( oder
Spalten) darstellbar.

Beispiel:

∣∣∣∣∣∣∣
1 1 5
1 0 2
1 2 8

∣∣∣∣∣∣∣ = 0 2 ·

 1
1
1

+ 3 ·

 1
0
2

 =

 5
2
8


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2.3 Spezielle Matrizen

2.3.1 Reguläre Matrizen

Eine quadratische Matrix A heißt regulär , wenn |A| ̸= 0, andernfalls heißt sie
singulär .

Beispiel:

Die Matrix A =

 4 −5 1
0 4 2
1 −2 3

 ist regulär.

2.3.2 Inverse Matrizen

Gibt es zu der quadratischen Matrix A eine Matrix X mit

AX = XA = E,

so heißt X die zu A inverse Matrix, gekennzeichnet durch A−1.

Anmerkungen

• Eine quadratische Matrix besitzt - wenn überhaupt - genau eine Inverse.

• Besitzt eine Matrix A eine inverse Matrix A−1, so heißt A invertierbar.

• Die Matrix A ist genau dann invertierbar, wenn A regulär ist.

Berechnung der Inversen

Für eine reguläre n × n-Matrix A lässt sich die inverse Matrix folgendermaßen berech-
nen:

A−1 = 1
|A|


A11 A21 ... An1
A12 A22 ... An2
... ... ... ...

A1n A2n ... Ann


Dabei bedeuten:

Aik = (−1)i+kDik

Dik : (n − 1)−reihige Unterdeterminante von A, d.h. in A wird die i-te Zeile und die
k-te Spalte gestrichen.

Wichtig: Beachten der Zeilen- und Spaltenindizes (transponiert zur Ausgangsmatrix ai′,k′)!
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Beispiel:
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2.3.3 Orthogonale Matrizen

Eine quadratische Matrix A heißt orthogonal, wenn

A−1 = AT bzw. mit A·A−1 = A·AT =⇒ E = A · AT

Beispiele:

1. A = E

2. A =
( 1√

2
1√
2

− 1√
2

1√
2

)

Eigenschaften

1. Betrachtet man die Zeilen (bzw. Spalten) einer othogonalen Matrix als Vektoren, so
sind diese orthonormiert.

2. Für orthogonale Matrizen ist |A| = 1 oder |A| = −1 denn: 1 = |E| = |AA−1|.

3. Die Umkehrung obiger Aussage gilt nicht, d.h. es gibt Matrizen A mit |A| = −1 oder
|A| = 1, die nicht orthogonal sind.

2.4 Rang einer Matrix

Eine beliebige n×m-Matrix A kann man als Anordnung von Spaltenvektoren bzw. Zeilenvek-
toren sehen. Diese Vektoren können linear abhängig oder linear unabhängig sein.

2.4.1 Definition

Die größte Anzahl r linear unabhängiger Spaltenvektoren einer n × m-Matrix A
bezeichnet man als

Rang von A, kurz: rg(A) (engl. rank)

2.4.2 Regeln

1. Die größte Anzahl linear unabhängiger Zeilenvektoren ist ebenfalls r.

Beispiel: A =
(

1 1 1
0 0 1

)
2. Die n × n-Matrix A ist genau dann invertierbar, wenn rg(A) = n gilt.

3. Der Rang einer Matrix ändert sich nicht, wenn:

• zwei Zeilen (oder Spalten) miteinander vertauscht werden

• die Elemente einer Zeile (oder Spalte) mit einem Skalar ̸= 0 multipliziert werden

• zu einer Zeile (oder Spalte) ein Vielfaches einer anderen Zeile (oder Spalte)
addiert wird
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2.4.3 Rangbestimmung

Die m × n-Matrix A wird durch Umformungen (s.o.), die den Rang nicht ändern, auf
Trapezform gebracht:

b11 b12 ... b1r b1,r+1 ... b1n

0 b22 ... b2r b2,r+1 ... b2n

... ... ... ... ... ... ...
0 0 ... brr br+1,r+1 ... brn

0 0 ... 0 0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 0 ... 0

mit m − r Nullzeilen.

Der Rang von A ist gleich der Anzahl r der nicht verschwindenden Zeilen, rg(A) = r

Beispiele:

Bestimmen Sie den Rang nachfolgender Matrizen:

1. A =

 1 1 1 0
2 1 1 3
1 2 0 3

 =⇒ rg(A) =

2. A =

 1 3 −5 0
2 7 −8 7

−1 0 11 21

 =⇒ rg(A) =



KAPITEL 3
Lineare Gleichungssysteme

3.1 Einführung

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat folgende Gestalt:

a11x1 + a12x2 + ... + a1nxn = c1
a21x1 + a22x2 + ... + a2nxn = c2

...
am1x1 + am2x2 + ... + amnxn = cn

Folgende Fragen werden in diesem Kapitel beantwortet:

• Existenz einer Lösung, d.h. gibt es eine Lösung?

• Dimension der Lösungsmenge

• Lösungsalgorithmus

Die Antworten werden mit Hilfe der Matrizeneigenschaften gegeben, denn obiges Glei-
chungssystem lässt sich durch Matrizen beschreiben

Ax = c

mit A =


a11 a12 ... a1n

a21 a22 ... a2n

...
am1 am2 ... amn

 x =


x1
x2
...
xn

 und c =


c1
c2
...
cn



3.2 Definitionen

• homogenes Gleichungssystem

Ax = 0

• inhomogenes Gleichungssystem

Ax = c mit c ̸= 0

• quadratisches Gleichungssystem

A ist eine quadratische Matrix

34
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Beispiele:

1. x1 − 2x2 + x3 = 1
x1 + x2 − 4x3 = 8

A =

2. x2 − 2x3 + x1 = 0
x3 + x2 − 4x1 = 0

A =

3. x1 − 2x2 + x3 = 1
x1 + x2 − 4x3 = 8
x1 + 3x2 + x3 = 2
x1 + x2 − 4x3 = 0

A =

3.3 Lösungsverhalten

3.3.1 Lösbarkeit

• Ein homogenes lineares Gleichungssystem
ist immer lösbar. Eine Lösung ist

x⃗ = 0⃗

• Ein beliebiges lineares Gleichungssystem ist genau dann lösbar, wenn

rg(A) = rg(A|⃗c)

mit rg(A|⃗c) = rg


a11 a12 ... a1n c1
a21 a22 ... a2n c2
...

am1 am2 ... amn cm


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3.3.2 Lösungsmenge

Falls das lineare Gleichungssystem, mit n Unbekannten, lösbar ist, lässt sich eine Aussage
über die Dimension der Lösungsmenge machen:

• rg(A) = rg(A|⃗c) = n

dann besitzt das lineare Gleichungssystem genau eine Lösung

• rg(A) = rg(A|⃗c) < n

dann besitzt das lineare Gleichungssystem unendliche viele Lösungen

rg(A) = rg(A|⃗c) = n − 1 Lösungsmenge ist eindimensional
rg(A) = rg(A|⃗c) = n − 2 Lösungsmenge ist zweidimensional
... ...

• rg(A) ̸= rg(A|⃗c)

dann besitzt das lineare Gleichungssystem keine Lösung

3.3.3 Lösungsberechnung - Cramersche Regel

Die Cramersche Regel oder Determinantenmethode ist eine mathematische Formel für die
Lösung eines linearen Gleichungssystems. Sie ist bei der theoretischen Betrachtung linearer
Gleichungssysteme hilfreich.

Die Cramersche Regel ist nach Gabriel Cramer benannt, der sie im Jahr 1750 veröffentlichte,
jedoch wurde sie bereits vorher von Leibniz gefunden.

Gegeben sei ein lineares Gleichungssystem der Dimension n × n in Matrixschreibweise

Ax = b.

Ist die quadratische Koeffizientenmatrix A regulär, also det(A ̸= 0), dann ist das Gleichungs-
system eindeutig lösbar und die Komponenten xi des eindeutig bestimmten Lösungsvektors
x sind gegeben durch:

xi = det(Ai)
det(A) für alle i.

Hierbei ist Ai die Matrix, die gebildet wird, indem die i-te Spalte der Koeffizientenmatrix
A durch die rechte Seite des Gleichungssystems b ersetzt wird:

Ai = (amn) =


a1,1 ... a1,i−1 b1 a1,i+1 ... a1,n

a2,1 ... a2,i−1 b2 a2,i+1 ... a2,n
...

...
...

...
...

an,1 ... an,i−1 bn an,i+1 ... an,n



Nachteil der Cramerschen Regel:

Für die Berechnung einer Lösung ist der Rechenaufwand jedoch in der Regel zu hoch.

Bei der Berechnung einer n × n-Matrix auf einem Rechner mit 108 Gleitkommaoperationen
pro Sekunde (100 Mflops) würden sich die folgenden Rechenzeiten ergeben:

n 10 12 14 16 18 20
Rechenzeit 0.4 s 1 min 3,6 h 41 Tage 38 Jahre 16000 Jahre
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Beispiel:

Cramersche Regel an einem Beispiel von 2 Gleichungen mit 2 Unbekannten: Wir betrachten
das Gleichungssystem

3.3.4 Lösungsberechnung - Gaußscher Algorithmus

Das gaußsche Eliminationsverfahren oder einfach Gauß-Verfahren (nach Carl Friedrich
Gauß) ist ein Algorithmus zum Lösen linearer Gleichungssysteme.

Durch schrittweises Eliminieren von Unbekannten aus einem gegebenen System wird ein
System in gestaffelter Form erzeugt, aus dem rückwärts rechnend die Unbekannten bestimmt
werden können. Erlaubt sind dabei folgende Umformungen:

• Zwei Gleichungen dürfen miteinander vertauscht werden

• Jede Gleichung darf mit einem beliebigen Skalar ̸= 0 multipliziert werden

• Zu jeder Gleichung darf ein beliebig Vielfaches einer anderen Gleichung addiert werden

Es gibt verschiedene Varianten des Gauß-Algorithmus, die hier vorgestellte ist die Sukzessi-
ve Elimination und Substitution. Das bedeutet, dass zunächst in der Eliminationsphase im
Tableau eine Dreiecksform hergestellt wird, sodass eine Variable abgelesen werden kann.
Die Dreiecksform kann implizit oder explizit hergestellt werden (hier explizit).

Gauß Gauß-Jordan

Gauß-Jordan Verfahren:

Dies ist eine Erweiterung des gaußschen Eliminationsverfahrens, bei dem in einem zusätz-
lichen Schritt das Gleichungssystem bzw. dessen erweiterte Koeffizientenmatrix auf die redu-
zierte Stufenform gebracht wird. Daraus lässt sich dann die Lösung direkt ablesen.
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Nachteile des Gaußschen Algorithmus:

Das Gaußsche Eliminationsverfahren ist ein direktes Verfahren, das i.a. verwendet wird,
falls A eine vollbesetzte Matrix ist. Bei vollbesetzten Matrizen wächst der Rechenaufwand
des Gaußschen Eliminationsverfahrens mit bis zu der dritten Potenz der Anzahl der
Unbekannten (Schreibweise: W = O(N2) bis (N3)).

Ablauf anhand eines Beispiels
Aus folgendem Gleichungssystem sollen die Unbekannten x1, x2, x3, x4 bestimmt werden

2x1 + 4x2 + 6x3 + 2x4 = 14
x1 − x2 + x3 − x4 = 10
4x1 + 2x2 + 14x3 + 2x4 = −4
2x1 + 7x2 + 10x3 − x4 = 4

1. Tabellenschema erstellen
2 4 6 2 14
1 -1 1 -1 10
4 2 14 2 -4
2 7 10 -1 4

2. Vereinfachung durch zeilenweises Kürzen

1 2 3 1 7
1 -1 1 -1 10
2 1 7 1 -2
2 7 10 -1 4

3. Eliminieren der 1. Unbekannten mit Hilfe der 1. Gleichung

Die letzte Spalte beschreibt den Rechenvorgang

1 2 3 1 7 I
0 -3 -2 -2 3 II-I
0 -3 1 -1 -16 III-2·I
0 3 4 -3 -10 IV-2·I

4. Eliminieren der 2. Unbekannten mit Hilfe der 2. Gleichung

1 2 3 1 7 I
0 -3 -2 -2 3 II
0 0 3 1 -19 III-II
0 0 2 -5 -7 IV+II

5. Eliminieren der 3. Unbekannten mit Hilfe der 3. Gleichung

1 2 3 1 7 I
0 -3 -2 -2 3 II
0 0 3 1 -19 III
0 0 0 -17 17 3·IV-2·III

6. Schrittweises Einsetzen von unten nach oben −17x4 = 17 =⇒ x4 = −1
3x3 − 1 = −19 =⇒ x3 = −6
−3x2 + 12 + 2 = 3 =⇒ x2 = 11

3
x1 + 22

3 − 18 − 1 = 7 =⇒ x1 = 56
3
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3.4 Spezialfall: quadratische lineare Gleichungssysteme

Von einem quadratischen Gleichungssystem ist die Rede, wenn die Zahl der Unbekannten
gleich der Zahl der Gleichungen ist. Ein Gleichungssystem dieser Form kann, wenn die Zeilen
oder Spalten linear unabhängig sind, eindeutig gelöst werden.

Die Besonderheit der quadratischen linearen Gleichungssysteme liegt in der Möglichkeit,
hierfür die Determinante berechnen zu können, und diese zur Untersuchung des Lösungs-
verhaltens heranziehen zu können.

3.4.1 homogenes quadratisches lineares GLS

Beispiel:

2x1 + 5x2 − 3x3 = 0
4x1 − 4x2 + x3 = 0
4x1 − 2x2 = 0

3.4.2 inhomogenes quadratisches lineares GLS

Beispiel:

Prüfen Sie nachfolgende linearen Gleichungssyteme auf Lösbarkeit und berechnen Sie die
Lösung mit Hilfe des Gaußschen Algorithmus.

2x1 + 3x2 + 2x3 = 2
−x1 − x2 − 3x3 = −5
3x1 + 5x2 + 5x3 = 3
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3.5 Rundungsfehler

Rundungsfehler können bei linearen Gleichungssystemen, wenn man unbedacht vorgeht,
manchmal einen katastrophalen Einfluss haben. Man kann das bereits an sehr kleinen
Gleichungssystemen mit wenigen Unbekannten beobachten

Beispiel:

Wir betrachten das Gleichungssystem Ax = b mit

 2 1.01 2.52 9.57
0.4 0.203 −1.8 −0.385
0.6 −1.05 0.8 −3.85


Das Gaußsche Eliminationsverfahren liefert bei 4-stelliger Genauigkeit, d.h. mit dezimalen
Gleitkommazahlen, deren Mantisse vierstellig ist, die exakte Lösung:

x1 = 1, x2 = 5, x3 = 1.

Wird die gleiche Rechnung jedoch mit 3-stelligen Gleitkommazahlen durchgeführt, so
kommt folgende, völlig unsinnige Lösung heraus:

x̂1 = 3.53, x̂2 = 0, x̂3 = 1.4

Mit geeigneten Varianten des Gaußschen Eliminationsverfahrens kann man derartige ”Kata-
strophen” verhindern, und daran ist man in der Praxis natürlich interessiert.

Wir werden hier keine derartigen problematischen Gleichungssysteme betrachten. Trotzdem
ist es interessant zu wissen, wann dieses Problem auftreten kann.

Bei zwei Gleichungen mit zwei Unbekannten beschreibt jede Gleichung eine Gerade. Sind
diese Geraden nahezu parallel, dann können winzige Änderungen in den Koeffizienten
der Geradengleichung (oder entsprechend im gegebenen Gleichungssystem) dazu fuhren,
dass sich der Schnittpunkt der Geraden (d.h. die Lösung des Gleichungssystems) erheblich
verschiebt.

Auch bei der zeichnerischen Lösung wird in derartigen Fällen die genaue Bestimmung des
Schnittpunktes zweier Geraden problematisch.

Analog ist es im dreidimensionalen Fall kritisch, wenn die Ebenen, die durch die Gleichungen
beschrieben werden, fast parallel sind, oder wenn die Schnittgeraden von je zwei Ebenen
nahezu parallel sind.
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3.6 Geschwindigkeit der Verfahren

Iterative Lösungsverfahren:

In der Praxis hat A häufig eine spezielle Struktur und/oder ist schwach besetzt (engl. sparse),
d.h. die meisten Elemente von A sind 0. N ist eventuell sehr groß, z.B. 106.

Dies bedeutet, dass man Gleichungssysteme mit einer Million von Unbekannten (oder
mehr) zu lösen hat.

In solchen Fällen sind iterative Lösungsverfahren eine interessante Alternative. Bei ihnen
startet man mit irgendeiner Startnäherung für die Unbekannten (im Zweifelsfall nimmt
man an, dass alle Unbekannten 0 sind) und reduziert den Fehler sukzessiv durch eine
geeignete Iterationsvorschrift.

Als Beispiele sind das Jacobi-Verfahren, Gauss-Seidel- sowie SOR (Successive OverRelaxation)
Verfahren genannt.

Aktuelle Mehrgitterverfahren bilden in der numerischen Mathematik eine Klasse von
effizienten Algorithmen zur näherungsweisen Lösung von Gleichungssystemen, die aus der
Diskretisierung partieller Differentialgleichungen stammen.

Es wird dazu auf die weiterführende Literatur verwiesen.

Geschwindigkeitsvergleich:

Betrachten wir ein lineares Gleichungssystem mit N = 106 Unbekannten. Die folgende
Tabelle vergleicht die für die Lösung dieses Gleichungssystems benötigte Anzahl an
Rechenoperationen und die benötigte Rechenzeit für verschiedene Verfahren auf einem
Standard-PC.

Sie gibt anschaulich die Leistungssteigerung wieder, die mit Hilfe von neuen Methoden der
Numerischen Mathematik erzielt wurde.
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Lineare Abbildungen

Lineare Abbildungen, wie z.B. Projektionen, Drehungen, Spiegelungen, finden in zahlreichen
Bereichen Anwendung (z.B. Zoomen des Bildschirminhalts). In diesem Kapitel untersuchen
wir ganz allgemein lineare Abbildungen, die Vektoren aus dem n-dimensionalen Raum (Rn)
in einen m-dimensionalen Raum (Rm) abbilden.

4.1 Definitionen

4.1.1 n-dimensionaler reeller Koordinatenraum
Der n-dimensionale reelle Koordinatenraum Rn ist die Menge der n-Tupel x =


x1
.
.

xn


mit xi ∈ R. Die Elemente des Rn bezeichnet man als Punkte oder als Vektoren. Wie bei Vek-
toren gilt die Addition, die Multiplikation mit einem Skalar und das Skalarprodukt.

4.1.2 Lineare Abbildung

Unter einer linearen Abbildung

y = Ax

versteht man die Transformation eines Vektors x ∈ Rn in einen Vektor y ∈ Rm durch
Multiplikation mit einer Matrix Am,n.

A heißt Abbildungsmatrix.
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4.2 Beispiele

4.2.1 R → R

Bekannt sind die linearen Abbildungen von R in R . Letztere sind alle Funktionen f mit

f(x) = mx mit m ∈ R, für alle x ∈ R

Mit der 1×1-Matrix A = (m) lässt sich dies in der Form:

y = Ax

schreiben.

4.2.2 R2 → R

Betrachtet man lineare Abbildungen vom R2 in R, so können diese folgendermaßen be-
schrieben werden:

y = a1x1+a2x2 bzw. y = Ax mit A =
(

a1 a2
)

und x =
(

x1
x2

)
Zum Beispiel ist y = x1 + x2 die Abbildung, die jedem Punkt (x1|x2) der reellen Ebene
den reellen Wert y zuordnet.

4.2.3 R2 → R2

Betrachtet man lineare Abbildungen vom R2 in R2, so können diese folgendermaßen
beschrieben werden:

y1 = a11x1 + a12x2
y2 = a21x1 + a22x2

bzw.

y = Ax mit y =
(

y1
y2

)
, A =

(
a11 a12
a21 a22

)
und x =

(
x1
x2

)

Die Abbildungsmatrix A =
(

1 0
0 1

)
bildet jeden Punkt der Ebene auf sich selbst ab.

Die Abbildungsmatrix A =
(

1 0
0 0

)
projiziert jeden Punkt der Ebene senkrecht auf die x-Achse.

Die Abbildungsmatrix A =
(

−1 0
0 1

)
spiegelt jeden Punkt der Ebene an der y-Achse.
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Abbildung Matrix

4.2.4 R3 → R3

Drehungen im R3 werden in Drehungen um die Achsen zerlegt.

Drehung um die z-Achse:

Drehmatrix Dz =

 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


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Eine wichtige lineare Abbildung im R3 ist die Drehung um eine Drehachse n⃗ =

 n1
n2
n3


um den Winkel α:

Die Drehmatrix der zusammengesetzten Drehung Dn⃗ erhält man durch Matrixmultiplikation
aus den Matrizen der einzelnen Drehungen um die x, y, z-Achsen.

Dn⃗ =

 n2
1(1 − cosα) + cosα n1n2(1 − cosα) − n3sinα n1n3(1 − cosα) + n2sinα

n2n1(1 − cosα) + n3sinα n2
2(1 − cosα) + cosα cosα(1 − cosα) − n1sinα

n3n1(1 − cosα) − n2sinα n3n2(1 − cosα) + n1sinα n2
3(1 − cosα) + cosα


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4.3 Eigenwerte, Eigenvektoren quadratischer Matrizen

Quadratische Matrizen beschreiben Abbildungen von einem Koordinatenraum in denselben
Koordinatenraum. Hierbei führt folgende Fragestellung zur Betrachtung von Eigenvektoren
und Eigenwerten:

Die Darstellung ein und derselben physikalischen Größe ist in verschiedenen Koordinatensys-
temen verschieden. Daher die Frage nach einem dem physikalischen Vorgang, bzw. der phy-
sikalischen Größe besonders angepassten Koordinatensystem.

Betrachtet man Abbildungen von einem Koordinatenraum in sich, so ist ein Eigenvektor
dieser Abbildung ein vom Nullvektor verschiedener Vektor, dessen Richtung durch die
Abbildung nicht verändert wird. Ein Eigenvektor wird also nur gestreckt. Man bezeichnet
den Streckungsfaktor als Eigenwert zum Eigenvektor.

Eigenwerte charakterisieren wesentliche Eigenschaften linearer Abbildungen, etwa ob ein
entsprechendes lineares Gleichungssystem eindeutig lösbar ist oder nicht. In vielen Anwen-
dungen beschreiben Eigenwerte auch physikalische Eigenschaften eines mathematischen
Modells.

Anwendungsbeispiele:

Schwingungsfähige Systeme besitzen bevorzugte Frequenzen - Resonanzfrequenzen -, die
durch Eigenvektoren beschrieben werden können.

Erwünschte Resonanzfrequenzen: Musikinstrumente
Unerwünschte Resonanzfrequenzen: Eigenschwingungen von Bauwerken

• Im Jahr 1850 marschierten 730 französische Soldaten im Gleichschritt über die
Hängebrücke von Angers. Die Brücke geriet in heftige Schwingungen und stürzte
ein. Es ist heute verboten, vgl. §27 StVO, im Gleichschritt über eine Brücke zu
marschieren. (1883 → Broughton Suspension Bridge, Manchester)

• Die Hängebrücke über den Tacoma Narrows stürzte 1940 ein, nachdem sie durch den
Wind zu immer stärkeren Schwingungen angeregt wurde.

Zum Schutz vor solchen Resonanzkatastrophen werden Konstruktionen auf eine Eigen-
schwingung ausgelegt, die typischerweise nicht im Betrieb auftritt. In Erdbebengebieten
richtet man sich dabei an die lokal typischen Schwingungsfrequenzen der Erderschütte-
rung.



4.3 Eigenwerte, Eigenvektoren quadratischer Matrizen 47

Die Eigenwerttheorie liefert mathematische Lösungsmethoden für diese und folgende
Themen

• Diagonalisierung symmetrischer Matrizen; vgl. Spannungstensoren

• Normalformen von Kegelschnitten, Ellipsoiden, etc.

• Lösungen linearer Differentialgleichungssysteme, zB bei Schwingungen

4.3.1 Definitionen

Ist A eine Abbildungsmatrix vom Rn auf sich, und ist 0 ̸= x ∈ Rn mit

Ax = λx mit λ ∈ R

So heißt x Eigenvektor zum Eigenwert

4.3.2 Berechnung

Methode zur Berechnung der Eigenwerte und Eigenvektoren einer quadratischen Matrix:

Es sei A eine n × n-Matrix.

Für die Eigenvektoren und Eigenwerte der Matrix A gilt:

Ax = λx
⇐⇒ Ax − λx = 0
⇐⇒ Ax − λEx = 0
⇐⇒ (A − λE)x = 0

Dies ist ein homogenes quadratisches lineares Gleichungssystem, welches immer x = 0 als
Lösung hat.

Nicht triviale Lösungen hat dieses Gleichungssystem genau dann wenn gilt:

|(A − λE)| = 0

Die Auflösung dieser Determinante liefert ein Polynom n-ten Grades für , das sogenannte
charakteristische Polynom .

Das charakteristische Polynom, das für quadratische Matrizen von endlichdimensionalen
Vektorräumen definiert ist, gibt Auskunft über Eigenschaften einer Matrix oder einer
linearen Abbildung.

Die Lösungen dieses Polynoms sind n (reelle und/oder imaginäre) Eigenwerte :

λ1, λ2, λ3, ...λn

Zu jedem dieser Eigenwerte kann der korrespondierende Eigenvektor berechnet werden,
durch Lösen des linearen Gleichungssystems

Ax − λix = 0, i = 1,2,...n

Beispiel:

Berechnen Sie das charakteristische Polynom sowie die Eigenwerte und Eigenvektoren

folgender Matrix: A =
(

1 3
0 2

)
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Bemerkungen

1. Ist x ein Eigenvektor zum Eigenwert λ, so ist auch kx ein Eigenvektor zum Eigenwert λ

2. Als Lösung wird üblicherweise (vgl. Punkt 1) ein Vektor exemplarisch angegeben,
oder sogar der normierte Vektor.

3. Sind alle Eigenwerte voneinander verschieden, so gehört zu jedem Eigenwert genau
ein linear unabhängiger Eigenvektor.

4. Tritt ein Eigenvektor k-fach auf, so gehören hierzu mindestens ein, höchstens k linear
unabhängige Eigenvektoren.

5. Die zu verschiedenen Eigenwerten gehörenden Eigenvektoren sind immer linear
unabhängig

4.3.3 EW und EV einer Dreiecksmatrix

Ist A eine n × n-Dreiecksmatrix, so sind die Eigenwerte identisch mit den Hauptdiago-
nalelementen der Matrix A:

i = aii für i = 1, 2, ...n

4.3.4 EW und EV einer symmetrischen Matrix

Die Eigenwerte und Eigenvektoren einer symmetrischen n × n-Matrix A besitzen
folgende Eigenschaften:

• alle Eigenwerte sind reell

• es gibt genau n linear unabhängige Eigenvektoren

• zu jedem einfachen Eigenwert gehört genau ein linear unabhängiger Eigenvektor,
zu jedem k-fachen Eigenwert gehören genau k linear unabhängige Eigenvektoren

• Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal



KAPITEL 5
Folgen

Eine Folge ist eine geordnete und numerierte Liste von Zahlen, die entweder in aufzählender
Schreibweise oder durch eine Rechenvorschrift gegeben sein kann. Folgen können gegen
einen Grenzwert konvergieren.

Die Theorie der Grenzwerte von Folgen ist eine wichtige Grundlage der Analysis, denn
auf ihr beruhen die Berechnung von Grenzwerten von Funktionen, die Definition der
Ableitung (Differentialquotient als Grenzwert einer Folge von Differenzenquotienten) und
der Riemannsche Integralbegriff. Wichtige Folgen erhält man auch als Koeffizienten von
Taylorreihen analytischer Funktionen.

5.1 Definition

Eine Folge ist eine Abbildung f : N 7→ R oder 7→ C
Notation: a = (an), wobei an das n-te Folgenelement ist.

5.1.1 Beispiele

Es sei a = (an) eine Folge mit

• an = n ∀ n ∈ N

• an = 1
n

∀ n ∈ N

• an = (−1)n ∀ n ∈ N

Arithmetische Folgen

Folgen deren Elemente folgendermaßen berechnet werden

an+1 − an = d bzw. an = a1 + (n − 1) · d bei beliebigem Anfangswert a1 und Konstante d

heißen arithmetische Folgen.

Bemerkung:
Jedes Folgenelement ist das arithmetische Mittel seiner beiden Nachbarn (ohne Be-
weis)
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an = an−1 + an+1
2

Geometrische Folgen

Folgen deren Elemente folgendermaßen berechnet werden

an = a1 · qn−1 bei beliebigem Anfangswert a1 und Konstante q

heißen geometrische Folgen (oft auch für n ∈ N0 als an = a0·qn bezeichnet).

Bemerkung:
Jedes Folgenelement ist das geometrische Mittel seiner beiden Nachbarn

an =
√

an−1 · an+1.

5.1.2 Definition monotone und beschränkte Folgen

Eine Folge (an) heißt

monoton wachsend wenn ak ≤ am für k < m.
monoton fallend wenn ak ≥ am für k < m.
streng monoton wachsend wenn ak < am für k < m.
streng monoton fallend wenn ak > am für k < m.
beschränkt wenn es eine Zahl M gibt mit |ak| ≤ M ∀ k ∈ N.

5.2 Konvergenz

5.2.1 Definitionen

• Eine Zahl g heißt Grenzwert oder Limes der Zahlenfolge (an), symbolisch

lim
n→∞

an = g

wenn es zu jedem ε > 0 eine natürliche Zahl n0 so gibt, dass |an − g| < ε für alle
n ≥ n0 gilt.

• Eine Folge mit Grenzwert 0 heißt Nullfolge.

• Eine Folge heißt konvergent , wenn sie einen endlichen Grenzwert besitzt.

Andernfalls divergent
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5.2.2 Rechenregeln für konvergente Folgen

Seien (an) und (bn) zwei konvergente Folgen mit lim
n→∞

an = a und lim
n→∞

bn = b.

Dann gilt:

• lim
n→∞

(an + bn) = a + b

• lim
n→∞

(anbn) = ab

• lim
n→∞

(an

bn

)
= a

b
, falls b ̸= 0 und bn ̸= 0 für alle n ∈ N

5.2.3 Folgen der Form p(n)/q(n)

Zur Bestimmung des Grenzwertes von Folgen der Form an = p(n)/q(n), wobei p(n) und
q(n) Polynome der Variablen n sind, gibt es folgendes Vorgehen:

1. Man erweitert den Bruch mit 1
nk

, wobei k der höchste Exponent ist, der in den
Polynomen p(n) und q(n) auftritt

lim
n→∞

p(n)
q(n) = lim

n→∞

p(n) · 1
nk

q(n) · 1
nk

2. Nun stehen in Zähler und Nenner jeweils konvergente Folgen, deren Grenzwert
bestimmt wird:

=
lim

n→∞
p(n) · 1

nk

lim
n→∞

q(n) · 1
nk

= p

q

3. Der Grenzwert der Folge (an) ist

lim
n→∞

an =

 ∞ für q = 0
p

q
für q ̸= 0

Beispiel:

lim
n→∞

n2 + n + 1
n − 1

Alternative: Satz von l’Hospital:

lim
n→∞

f(n)
g(n) = lim

n→∞
f ′(n)
g′(n) mit g′(n) ̸= 0

Beispiel:

lim
n→∞

n2 + n + 1
n − 1
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5.2.4 Eulersche Zahl (ohne Beweis)

lim
n→∞

(
1 + 1

n

)n

= e = 2,71828182...

5.2.5 Konvergenzaussagen für monotone Folgen (ohne Beweis)

1. Eine monoton wachsende beschränkte Folge ist konvergent

2. Eine monoton fallende beschränkte Folge ist konvergent
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Funktionen

Unter einer Funktion versteht man eine Vorschrift f , die jedem Element x aus einer Defini-
tionsmenge D ein Element y aus einer Wertemenge W zuordnet.

Notation: y = f(x)

Im folgenden betrachten wir nur eindimensionale reellwertige Funktionen, also Funktionen

f : R 7→ R

6.1 Darstellungsformen von Funktionen

Es gibt unterschiedliche Darstellungsformen einer Funktion:

1. explizite Darstellung y = f(x)

Hier kann der Funktionswert y für jedes x direkt berechnet werden.

Beispiel:
y = 2x + 3

2. implizite Darstellung F (x,y) = 0

Hier kann der Funktionswert nicht direkt aus einer Zuordnungsvorschrift berechnet
werden, sondern nur indirekt über den Zusammenhang F (x,y) = 0.

Beispiele:
y − 2x − 3 = 0
x2y = 1

Es ist nicht immer möglich eine impizite Darstellung in eine explizite umzuformen.

3. Parameterdarstellung x = x(t), y = y(t)

Bei der mathematischen Beschreibung eines Bewegungsablaufs wird oft die Lage eines
Körpers durch seine Koordinaten (x,y), die sich mit der Zeit t verändern, beschrieben.
Eine Darstellung dieser Art ist eine Parameterdarstellung.

Beispiele:
x(t) =cos(t) und y(t) =sin(t)
x(t) = t2 − 1 und y(t) = t(t2 − 1)
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6.2 Eigenschaften

6.2.1 Nullstellen

Eine Funktion y = f(x) besitzt an der Stelle x0 eine Nullstelle, wenn f(x0) = 0.

6.2.2 (un-)gerade Funktionen

Eine Funktion f mit einem symmetrischen Definitionsbereich D heißt

gerade, wenn f(−x) = f(x) für jedes x ∈ D
ungerade, wenn f(−x) = −f(x) für jedes x ∈ D

Beispiel:

Die Funktion y =sin(x) ist ungerade . Die Funktion y =cos(x) ist gerade .

6.2.3 monotone Funktionen

Eine Funktion f heißt

monoton wachsend wenn für alle a < b gilt: f(a) ≤ f(b)
streng monoton wachsend wenn für alle a < b gilt: f(a) < f(b)
monoton fallend wenn für alle a < b gilt: f(a) ≥ f(b)
streng monoton fallend wenn für alle a < b gilt: f(a) > f(b)
konstant wenn für alle a, b gilt: f(a) = f(b)

Beispiele:

f(x) = x3 ist streng monoton wachsend

f(x) = 1 ist konstant

6.2.4 periodische Funktionen

Eine Funktion f heißt periodisch mit der Periode T , wenn mit jedem x ∈ D auch
x ± T ∈ D ist und es gilt:

f(x ± T ) = f(x)

Beispiel:

Die Funktion f(x) =sin(2x) ist periodisch mit Periode T = π
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6.2.5 umkehrbare Funktion

Eine Funktion f heißt umkehrbar, wenn aus

x1, x2 ∈ D mit x1 ̸= x2 stets f(x1) ̸= f(x2) folgt.

Bestimmung der Umkehrfunktion

Ist die Funktion y = f(x) umkehrbar, so bestimmt man die Umkehrfunktion in folgenden
Schritten:

1. Vertauschen der Variablen x und y : x = f(y)
Dies ist die Umkehrfunktion in impliziter Schreibweise

2. Auflösen nach y (nicht immer möglich)
Dies ist die explizite Darstellung der Umkehrfunktion f−1(x)

Beispiele:

1. y = (x + 1)2 für x ≥ 0

2. y = x2 − 2x + 3 für x ≥ 2

6.2.6 Grenzwert einer Funktion

Eine Funktion f sei in einer Umgebung der Stelle x0 definiert. Gilt dann für jede im
Definitionsbereich der Funktion liegende und gegen die Stelle x0 konvergierende Zahlenfolge
(xn) mit xn ̸= x0 stets

lim
n→∞

f(xn) = g

so heißt g der Grenzwert von f an der Stelle x0.

Notation: lim
x→x0

f(x) = g

Beispiele:

1. lim
x→2

(
x2 − 2x

x − 2

)
=

2. lim
x→0

(
1
x

)
=
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Besitzt eine Funktion f die Eigenschaft, dass die Folge ihrer Funktionswerte (f(xn)) für
jede wachsende Zahlenfolge (xn) ∈ D gegen eine Zahl g strebt, so heißt g der
Grenzwert von f für x → ∞.

Notation: lim
x→∞

f(x) = g

Analog gilt:

Besitzt eine Funktion f die Eigenschaft, dass die Folge ihrer Funktionswerte (f(xn)) für
jede fallende Zahlenfolge (xn) ∈ D gegen eine Zahl g strebt, so heißt g der
Grenzwert von f für x → −∞.

Notation: lim
x→−∞

f(x) = g

Beispiele:

1. lim
x→∞

(
2x − 1

x

)
=

2. lim
x→±∞

(
x3

x2 + 1

)
=

Rechenregeln für Grenzwerte

Falls die jeweiligen Grenzwerte existieren, gelten folgende Regeln:

1. lim
x→x0

(Cf(x)) = C( lim
x→x0

f(x)) für beliebige Konstante C

2. lim
x→x0

(f(x) ± g(x)) = lim
x→x0

f(x) ± lim
x→x0

g(x)

3. lim
x→x0

(f(x)g(x)) = lim
x→x0

f(x) lim
x→x0

g(x)

4. lim
x→x0

(
f(x)
g(x)

)
=

lim
x→x0

f(x)

lim
x→x0

g(x) falls lim
x→x0

g(x) ̸= 0

Bemerkungen

• Diese Regeln gelten entsprechend für Grenzwerte vom Typ x → ±∞

• Grenzwerte, die zu einem Ausdruck ”0
0” oder ”∞

∞
” führen, werden in Mathematik 2

behandelt.

6.2.7 Stetige Funktionen

Eine in x0 und in einer Umgebung von x0 definierte Funktion f heißt an der Stelle x0
stetig , wenn der Grenzwert der Funktion an dieser Stelle vorhanden ist und mit dem

dortigen Funktionswert übereinstimmt:

lim
x→x0

f(x) = f(x0)

Eine in x0 und in einer Umgebung von x0 definierte Funktion f heißt an der Stelle x0
unstetig , wenn eine der folgenden Aussagen zutrifft:
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1. Der Grenzwert von f an der Stelle x0 ist zwar vorhanden, stimmt jedoch nicht mit
dem Funktionswert überein, d.h.

lim
x→x0

f(x) ̸= f(x0)

2. Der Grenzwert von f an der Stelle x0 existiert nicht.

Eine Funktion f heißt stetig, wenn sie für jedes x0 ∈ D stetig ist.

6.3 Polynomfunktionen

6.3.1 Definition

Funktionen vom Typ

f(x) = anxn + an−1xn−1 + ... + a1x + a0

werden als ganzrationale Funktionen oder Polynomfunktionen bezeichnet.
Die Zahlen a0, a1,...an ∈ R heißen Koeffizienten .

Der höchste Exponent n in der Funktionsgleichung mit an ̸= 0 heißt Grad des
Polynoms.

Bemerkungen

Polynomfunktionen besitzen viele besonders einfache und angenehme Eigenschaften:

Ein Polynom vom Grade n hat genau n (ev. komplexe) Nullstellen. Sie lassen sich problemlos
differenzieren und integrieren. Aus diesem Grunde versucht man die bei technischen Proble-
men auftretenden Funktionen durch Polynome zu approximieren.

Beispiele:

1. y = 4

2. y = 2x − 3

3. y = 2x2 − 3x + 5

4. y = 4x8 − x5 + 3x

6.3.2 Spezialfall: Polynom 1. Grades

Polynome ersten Grades haben folgende Funktionsgleichung:

y = a1x + a0 oder y = mx + b

Der Graph ist eine Gerade mit Steigung m und y-Achsenabschnitt b. Abhängig von der Pro-
blemstellung wird die Geradengleichung in folgenden Formen aufgestellt:
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• Punkt-Steigungs-Form: Gegeben ein Punkt (x1|y1) und die Steigung m der Geraden:
y − y1
x − x1

= m

• Zwei-Punkte-Form: Gegeben zwei Punkte (x1|y1) und (x2|y2) der Geraden:
y − y1
x − x1

= y2 − y1
x2 − x1

• Achsenabschnitts-Form: Gegeben die beiden Achsenabschnitte a der x-Achse und b
der y-Achse der Geraden:

x

a
+ y

b
= 1
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6.3.3 Spezialfall: Polynom 2. Grades

Polynome zweiten Grades haben folgende Funktionsgleichung:

y = a2x2 + a1x + a0 oder y = ax2 + bx + c

Der Graph ist eine Parabel. Das Vorzeichen des Koeffizienten a entscheidet über die Öffnung
der Parabel:

a > 0 Parabel nach oben geöffnet, Scheitelpunkt ist Tiefpunkt
a < 0 Parabel nach unten geöffnet, Scheitelpunkt ist Hochpunkt

Abhängig von der Problemstellung wird die Parabelgleichung in folgenden Formen aufge-
stellt:

• Koordinatenform

y = ax2 + bx + c

• Produktform

Gegeben a und die Nullstellen x1, x2 der Parabel:

y = a(x − x1)(x − x2)

• Scheitelpunktsform

Gegeben a und die Koordinaten des Scheitelpunktes S = (x0|y0) der Parabel:

y − y0 = a(x − x0)2

6.3.4 Nullstellen

Anzahl der Nullstellen

Ein Polynom n-ten Grades besitzt genau n eventuell komplexe Nullstellen, also höchstens
n reelle Nullstellen.
Mehrfach auftretende Nullstellen werden entsprechend oft mitgezählt.

Produktdarstellung

Sind die Nullstellen der Polynomfunktion n-ten Grades bekannt x1, x2,...xn, so lässt sich
die Funktion auch in Form eines Produktes darstellen:

f(x) = anxn + an−1xn1 + ... + a1x + a0
= an(x − x1)(x − x2)...(x − xn)

Die n Faktoren x−x1, x−x2, ..., x−xn werden als Linearfaktoren der Produktdarstellung
bezeichnet.
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Bemerkungen

1. Bei einer r-fachen Nullstelle tritt der zugehörige Linearfaktor r-fach auf.

2. Ist die Anzahl der reellen Nullstellen k kleiner als der Polynomgrad n, so besitzt die
reelle Produktdarstellung folgende Form:

f(x) = an(x − x1)(x − x2)...(x − xk)f∗(x)

wobei f∗ eine Polynom vom Grade n − k ohne reelle Nullstellen ist.

Nullstellenberechnung

Die Nullstellen einer Polynomfunktion f vom Grade n > 2 lassen sich schrittweise berechnen:

1. Im ersten Schritt wird durch Probieren versucht eine (reelle) Nullstelle x1 als Faktor
von a0 zu bestimmen.

2. Hat man eine Nullstelle gefunden, so wird die Polynomfunktion durch den Linearfaktor
x − x1 dividiert. Das Restpolynom hat einen Grad n − 1.

3. Durch Wiederholung der Schritte 1 und 2 wird so lange verfahren, bis das Restpolynom
vom Grad ≤ 2 ist, wofür es eine Berechnungsvorschrift für die Nullstellen gibt.

6.4 Gebrochen rationale Funktionen

6.4.1 Definition

Funktionen, die als Quotient zweier Polynomfunktionen g(x) und h(x) darstellbar sind,
heißen gebrochen-rationale Funktionen:

y = g(x)
h(x) = amxm + am−1xm−1 + ... + a1x + a0

bnxn + bn−1xn−1 + ... + n1x + a0

Gebrochen rationale Funktionen sind für alle x ∈ R, außer den Nennernullstellen, defi-
niert.

Gebrochen rationale Funktionen heißen für

n > m echt gebrochen rationale Funktionen
n ≤ m unecht gebrochen rationale Funktionen

Beispiele

1. f(x) = x3 − 1
x + 1

2. f(x) = x2 + 2x + 3
x2 + x

3. f(x) = x − 1
x2 + x + 1
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6.4.2 Definitionsbereich, Nullstellen, Pole

1. Der Definitionsbereich einer gebrochen rationalen Funktion

f = g

h
besteht aus allen reellen Zahlen außer den Nennernullstellen, d.h.

D = R\{Nennernullstellen}

2. Die Nullstellen einer gebrochen rationalen Funktion f = g

h
sind alle Zählernullstellen

aus D, d.h. x0 ∈ D mit g(x0) = 0.

3. Definitionslücken, in deren unmittelbarer Umgebung die Funktionswerte über alle
Grenzen wachsen heißen Pole .

Vorgehensweise

Zur Bestimmung des Definitonsbereiches, der Nullstellen und der Pole einer gebrochen
rationalen Funktion, wird folgendermassen vorgegangen:

1. Bestimmung aller Nullstellen des Nenners, ergibt den Definitionsbereich

2. Bestimmen aller Zählernullstellen im Definitionsbereich, ergibt die Nullstellen

3. Zerlegung von Zähler und Nenner in Linearfaktoren und Kürzen dieser Faktoren
soweit möglich

4. Die Nennernullstellen der gekürzten gebrochen rationalen Funktion ergeben die Pole

5. Die Definitionslücken, welche keine Pole sind, sind hebbare Lücken der Funktion

6.4.3 Asymptoten

Um das Verhalten einer gebrochen rationalen Funktion f für große x-Werte, d.h. für
x → ±∞, zu bestimmen, wird die gebrochen rationale Funktion durch Polynomdi-
vision in eine Summe aus Polynom p und echt gebrochen rationale Funktion r zer-
legt.

f(x) = p(x) + r(x)

Da die echt gebrochen rationale Funktion r für große x gegen 0 konvergiert,

lim
x→±∞

r(x) = 0

nähert sich die gebrochen rationale Funktion für große x dem Polynom an. Man nennt p(x)
die Asymptote von f .

f(x) ≈ p(x) für x → ±∞,

Bemerkung

An den Polstellen xi spricht man ebenfalls von Asymptoten x = xi
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6.5 Potenzfunktionen

Potenzfunktionen sind vom Typ
f(x) = xr mit x > 0 und r ∈ R
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6.6 Trigonometrische Funktionen

6.6.1 Definition

Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechne-
rische Zusammenhänge zwischen Winkel und Seitenverhältnissen (ursprünglich in recht-
winkligen Dreiecken). Tabellen mit Verhältniswerten für bestimmte Winkel ermöglichen
Berechnungen bei Vermessungsaufgaben, die Winkel und Seitenlängen in Dreiecken nut-
zen.

Die trigonometrischen Funktionen sind außerdem die grundlegenden Funktionen zur Be-
schreibung periodischer Vorgänge in den Naturwissenschaften.

Sie finden u.a. Anwendung bei

• mechanischen und elektromagnetischen Schwingungen

• gekoppelten Schwingungen

• Ausbreitung von Wellen

Die 4 trigonometrischen Funktionen Sinus, Kosinus, Tangens, Kotangens sind folgen-
dermaßen im rechtwinkligen Dreieck definiert:

Für beliebige Winkel x werden die trigonometrischen Funktionen mit Hilfe des Einheits-
kreises definiert.



64 6 Funktionen

6.6.2 Zusammenhänge

Es gelten folgende nützliche Gleichungen:

6.6.3 Allgemeine Sinus- und Kosinusfunktion

Bei der Beschreibung von (mechanischen, elektromagnetischen) Schwingungsvorgängen be-
nötigt man Sinus- und Kosinusfunktionen in der allgemeinen Form:

y = a·sin(bx + c)
y = a·cos(bx + c)

Die Parameter a, b, c mit a > 0 und b > 0, bewirken gegenüber den elementaren Sinus- und
Kosinusfunktionen y =sinx bzw. y =cosx folgende Änderung:

y = a·sin(bx + c) Periode: p = 2π

b

1. Nullstelle x0 = −c

b

Wertebereich −a ≤ y ≤ a

y = a·cos(bx + c) Periode: p = 2π

b

1. Maximum: xm = −c

b

Wertebereich: −a ≤ y ≤ a
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Anwendungsbeispiel: harmonische Schwingung eines Federpendels

Bei der Schwingung eines Federpendels kann die Auslenkung y als Sinusschwingung abhängig
von der Zeit t, betrachtet werden.

y = Asin(ωt + φ)

Dabei bedeuten:

A Amplitude, d.h. maximale Auslenkung (ymax)

ω Kreisfrequenz der Schwingung

φ Phase

T = 2π

ω
ist die Periodendauer (Schwingungsdauer)

t0 = −φ

ω
Phasenverschiebung

6.6.4 Darstellung der Sinusschwingung im Zeigerdiagramm

Eine Sinusschwingung vom Typ

y = Asin(ωt + φ)

lässt sich durch einen Zeiger mit

Länge A
Winkel φ

symbolisch darstellen.
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Überlagerung gleichfrequenter Sinuschwingungen

Nach dem Superpositionsprinzip der Physik, entsteht bei der Überlagerung zweier gleich-
frequenter Sinusschwingungen

y1 = A1sin(ωt + φ1) und y2 = A2sin(ωt + φ2)

eine resultierende Schwingung gleicher Frequenz

y = Asin(ωt + φ)

Die Amplitude A und der Phasenwinkel φ der resultierenden Schwingung lassen sich
zeichnerisch im Zeigerdiagramm ermitteln.
Der Zeiger der resultierenden Schwingung ergibt sich durch vektorielle Addition der beiden
anderen Zeiger

Ergebnis der Überlagerung

Die Überlagerung zweier gleichfrequenter Sinusschwingungen

y1 = A1sin(ωt + φ1) und y2 = A2sin(ωt + φ2)

ergibt eine resultierende Schwingung gleicher Frequenz

y = Asin(ωt + φ)

mit

A =
√

A2
1 + A2

2 + 2A1A2cos(φ2 − φ1)

und

tanφ = A1sinφ1 + A2sinφ2
A1cosφ1 + A2cosφ2
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6.7 Arkusfunktionen

Die Arkusfunktionen sind die Umkehrfunktionen der trigonometrischen Funktionen. Grund-
sätzlich lassen sich die trigonometrischen Funktionen nicht umkehren, da sie periodisch
sind. Beschränkt man sich jedoch auf gewisse Intervalle, in denen die Funktionen streng
monoton verlaufen, so sind sie diesbezüglich umkehrbar.

Die Umkehrfunktionen werden als Arkusfunktionen bezeichnet. Ihre Funktionswerte
sind im Bogenmaß dargestellte Winkel.

6.7.1 Arkussinus & Arkuscosinus

Die Arkussinusfunktion y =arcsin(x) ist die Umkehrfunktion der auf das Intervall
−π

2 ≤ x ≤ π

2 beschränkten Sinusfunktion y =sin(x).

Die Arkuscosinusfunktion y =arccos(x) ist die Umkehrfunktion der auf das Intervall
0 ≤ x ≤ π beschränkten Kosinusfunktion y =cos(x).

y =sin(x) y =arcsin(x) y =cos(x) y =arccos(x)

Definitionsbereich −π

2 ≤ x ≤ π

2 −1 ≤ x < 1 0 ≤ x ≤ π −1 ≤ x < 1

Wertebereich −1 ≤ y ≤ 1 −π

2 ≤ y ≤ π

2 −1 ≤ y ≤ 1 0 ≤ y ≤ π

Nullstellen x0 = 0 x0 = 0 x0 = π
2 x0 = 1

Monotonie s. m. steigend s. m. steigend s. m. fallend s. m. fallend
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6.7.2 Arkustangens & Arkuscotangens

Die Arkustangensfunktion y = arctan(x) ist die Umkehrfunktion der auf das Intervall
−π

2 < x <
π

2 beschränkten Tangensfunktion y =tan(x).

Die Arkuscotangensfunktion y = arccot(x) ist die Umkehrfunktion der auf das Inter-
vall 0 < x < π beschränkten Kotangensfunktion y =cot(x).

y =tan(x) y =arctan(x) y =cot(x) y =arccot(x)

Definitionsbereich −π

2 ≤ x ≤ π

2 −∞ ≤ y ≤ ∞ 0 ≤ x ≤ π −∞ ≤ y ≤ ∞

Wertebereich −∞ ≤ y ≤ ∞ −π

2 < y <
π

2 −∞ ≤ y ≤ ∞ 0 ≤ y ≤ π

Nullstellen x0 = 0 x0 = 0 x0 = π
2 keine

Monotonie s. m. steigend s. m. steigend s. m. fallend s. m. fallend

6.7.3 Trigonometrische Gleichungen

Unter einer trigonometrischen Gleichung versteht man eine Gleichung, bei der die Unbekannte x
in den Argumenten trigonometrischer Funktionen auftritt (z.B. sin(2x) = 3

2cos(x)).
Es gibt hierzu kein allgemeines Lösungsverfahren.

6.8 Exponentialfunktionen

Funktionen vom Typ

y = ax mit a > 0 und a ̸= 1

heißen Exponentialfunktionen.

Beispiele

• y = 2x

• y =
(1

3
)x

• y = ex

• y = e−x
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Anwendungsbeispiele

• Abklingfunktion y = a−λt mit a > 0, λ > 0

• Sättigungsfunktion y = a(1 − e−λt) mit a > 0, λ > 0

• aperiodischer Schwingungsvorgang

Der aperiodische Schwingungsvorgang tritt ein, wenn ein schwingungsfähiges System
infolge zu großer Reibung zu keiner echten Schwingung mehr fähig ist, sondern sich
asymptotisch der Gleichgewichtslage nähert.

y = 10e−2t − 10e−4t für t > 0

• Gauß-Funktion

y = e−x2 mit x ∈ R

Die Gauß-Funktion spielt eine wesentliche Rolle in der Wahrscheinlichkeitsrechnung.

6.9 Logarithmusfunktionen

Die Logarithmusfunktion y =logax ist die Umkehrfunktion der Exponentialfunktion

y = ax mit a > 0, a ̸= 1.

spezielle Logarithmen

natürl. Logarithmus lnx =logex

Zehnerlogarithmus lgx =log10x

Zweierlogarithmus lbx =log2x

Rechenregeln für Logarithmen

loga(uv) =loga(u)+loga(v)

loga

(u

v

)
=logau−logav

logaun = nlogau

logbr = logar

logab
= 1

logab
·logar
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6.10 Hyperbelfunktionen

Die Hyperbelfunktionen sind spezielle Kombinationen aus den beiden e-Funktionen y = ex

und y = e−x, die in dieser Gestalt häufig in den Anwendungen vorkommen. So beispielsweise
der Kosinus hyperbolicus im Brückenbau. Er beschreibt eine Kettenlinie, die immer dann
entsteht, wenn eine ideale Kette in zwei Punkten aufgehängt wird und im Schwerefeld
durchhängen kann.

Definition:

Sinus hyperbolicus: y =sinh(x) = ex − e−x

2

Kosinus hyperbolicus: y =cosh(x) = ex + e−x

2

Tangens hyperbolicus: y =tanh(x) = ex − e−x

ex + e−x

Kotangens hyperbolicus: y =coth(x) = ex + e−x

ex − e−x

Die Hyperbelfunktionen heißen deshalb so, da die Punkte (cosh(a), sinh(a)) auf der Hyperbel
x2 − y2 = 1 liegen, ähnlich wie man auch Sinus und Cosinus Kreisfunktionen nennt, weil
alle Punkte (cos(a), sin(a)) auf dem Einheitskreis liegen
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Zusammenhänge zwischen den Hyperbelfunktionen

tanh(x) = sinh(x)
cosh(x)

coth(x) = cosh(x)
sinh(x) = 1

tanh(x)

sinh(x ± y) sinh(x) · cosh(y) ± cosh(x) · sinh(y)

cosh(x ± y) = cosh(x) · cosh(y) ± sinh(x) · sinh(y)

tanh(x ± y) = tanh(x) ± tanh(y)
1 ± tanh(x) · tanh(y)

Weitere Zusammenhänge

• cosh2(x)−sinh2(x) = 1

• sinh(2x) = 2sinh(x)·cosh(x)

• cosh(2x) =sinh2(x)+cosh2(x)

• ex =cosh(x)+sinh(x)

• ex =cosh(x)±sinh(x)
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6.11 Areafunktionen

Die Umkehrfunktionen der Hyperbelfunktionen heißen Areafunktionen. Der Name Area
rührt daher, da sich die Umkehrfunktion des Kosinus hyperbolicus als Fläche (Area) deuten
lässt.

Die Hyperbelfunktionen sinh, tanh und coth sind streng monoton und damit umkehrbar.
Die Funktion cosh muss auf ein Teilintervall (x ≥ 0) eingeschränkt werden, damit sie
ebenfalls umkehrbar ist.

Definition:

Die Umkehrfunktionen der Hyperbelfunktionen sinhx, coshx eingeschränkt auf x ≥ 0,
tanhx und cothx sind:

Areasinus hyperbolicus: y =arsinh(x)

Areakosinus hyperbolicus: y =arcosh(x)

Areatangens hyperbolicus: y =artanh(x)

Areakotangens hyperbolicus: y =arcoth(x)



KAPITEL 7
Komplexe Zahlen

7.1 Einführung

Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wur-
zeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen
Zahl i als Lösung der Gleichung i2 = −1. Diese Zahl i wird imaginäre Einheit
bezeichnet.

Beispiel:

1. x2 − 4x + 3 = 0

pq-Formel: x2 + p · x + q = 0 mit Lösungen: x1/2 = −p

2 ±

√(p

2
)2

− q

⇒ x1/2 = −
(−4

2
)

±

√(−4
2
)2

− 3 = 2 ±
√(

− 2
)2

− 3 = 2 ±
√

1

⇒ x1/2 = 2 ± 1

2. x2 + 2x + 2 = 0

⇒ x1/2 = −1 ± (−1)2 − 2 = −1 ±
√

−1

Es exisitert keine reelle Lösung, denn es gibt keine reelle Zahl w ∈ R mit w2 = −1.

Setzt man allerdings w = i ·
√

1 ⇒ w2 =
(
i ·

√
1
)2

= i2 · 1 = −1

Es gibt also zwei komplexe Lösungen x = −1 ± w

x1 = −1 + i und x2 = −1 − i

Komplexe Zahlen werden meist in der Form

z = a + ib

dargestellt, wobei a und b reelle Zahlen sind und i die imaginäre Einheit ist. Auf die so
dargestellten komplexen Zahlen lassen sich die üblichen Rechenregeln für reelle Zahlen
anwenden, wobei stets i2 durch −1 ersetzt werden kann.

In der Elektrotechnik wird als Symbol statt i ein j benutzt, um Verwechslungen mit der
Stromstärke zu vermeiden.

Für die Menge der komplexen Zahlen wird das Symbol C verwendet.
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Der so konstruierte Zahlenbereich der komplexen Zahlen hat eine Reihe vorteilhafter
Eigenschaften, die sich in vielen Bereichen der Natur- und Ingenieurwissenschaften als
äußerst nützlich erwiesen haben:

• Einer der Gründe für diese positiven Eigenschaften ist die algebraische Abgeschlos-
senheit der komplexen Zahlen. Dies bedeutet, dass jede algebraische Gleichung n-ter
Ordnung

an
nxn + an−1

n−1xn−1 + ... + a1x + a0 = 0

über den komplexen Zahlen genau n Lösungen besitzt, was für reelle Zahlen nicht
gilt. Diese Eigenschaft ist Inhalt des Fundamentalsatzes der Algebra.

• Ferner ist jede einmal komplex differenzierbare Funktion von selbst beliebig oft
differenzierbar, anders als in der Mathematik der reellen Zahlen.

• Ein weiterer Grund ist ein Zusammenhang zwischen den trigonometrischen Funktionen
sin und cos mit der Exponentialfunktion, der über die komplexen Zahlen hergestellt
werden kann.

• Die Integraltransformationen Fourier-Transformation, Laplace-Transformation und
z-Transformation, die z.B. in der Regelungstechnik Anwendung finden sind Transfor-
mationen im komplexen Raum

• Schliesslich ermöglichen die komplexen Zahlen eine vereinfachte Beschreibung von
Phasenverschiebungen in der Elektrotechnik

7.2 Definitionen

7.2.1 Zahlen

natürliche Zahlen N = {1, 2, 3, ...}

natürliche Zahlen mit Null N0 = {0, 1, 2, 3, ...}

ganze Zahlen Z = {... − 2, −1, 0, 1, 2, ...}

rationale Zahlen Q = { n
m | n, m ∈ Z}

= { endliche und periodische Dezimalbrüche }

reelle Zahlen R = { endliche und unendliche Dezimalbrüche }

komplexe Zahlen C = {a + ib | a,b ∈ R}

Komplexe Zahlen werden typischerweise durch z dargestellt.
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7.2.2 Komplexe Zahlen

Komplexe Zahlenebene:

Die Menge der reellen Zahlen lässt sich durch Punkte auf einer Zahlengeraden veranschau-
lichen. Die Menge der komplexen Zahlen lässt sich als Punkte in einer Ebene darstellen.
Diese Ebene wird durch 2 Achsen aufgespannt:
Die reelle Achse Re und die imaginäre Achse Im.
Die Teilmenge der reellen Zahlen liegt auf der waagrechte Achse Re, die Teilmenge der
imaginären Zahlen, d.h. Zahlen ohne realen Anteil liegen auf der senkrechten Achse Im.
Eine komplexe Zahl besitzt dann die horizontale Koordinate a und die vertikale Koordinate b.

Imaginäre Einheit:

Die spezielle komplexe Zahl mit Abstand 1 vom Nullpunkt auf der imaginären Achse wird
imaginäre Einheit i genannt: und es wird festgelegt:

i2 = −1

Mit Hilfe der imaginären Einheit lässt sich jede komplexe Zahl z darstellen durch:

z = a + ib mit a, b ∈ R

Real- und Imaginärteil:

Ist z = a + ib ∈ C, so heißt:

a =Re(z) Realteil von z

b =Im(z) Imaginärteil von z

Konjugiert komplexe Zahl

Für z = a + ib ∈ C ist

z = a − ib

die konjugiert komplexe Zahl.
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Betrag von z

Der Betrag einer komplexen Zahl z ist definiert durch

|z| =
√

a2 + b2 =
√

zz

und entspricht ihrem Abstand in der komplexen Zahlenebene vom Nullpunkt. Ist die Zahl z
eine reelle Zahl, also ist b = 0, so ist wie gewohnt |z| =

√
a2 = |a|.

Beispiel:

{z ∈ C| |z| = 1} entspricht dem Einheitskreis um den Ursprung in der komplexen Zahlenebene.

Polarform einer komplexen Zahl

Statt komplexe Zahlen in kartesischen Koordinaten zu beschreiben, kann man auch polare
Koordinaten verwenden.
In der Mathematik versteht man unter einem Polarkoordinatensystem ein zweidi-
mensionales Koordinatensystem, in dem jeder Punkt auf einer Ebene durch einen Winkel
und einen Abstand definiert werden kann.

Das Polarkoordinatensystem ist hilfreich, wenn sich das Verhältnis zwischen 2 Punkten
leichter durch Winkel und Abstände beschreiben lässt, als durch kartesische Koordina-
ten.

Die komplexe Zahl z = x + iy wird in Polarform durch

r, den Abstand zum Ursprung in der komplexen Ebene und
φ, den Winkel zur reellen Achse

angegeben. Es ist dann:

z = rcosφ + i · rsinφ

Üblicherweise nennt man r hier den Betrag von z und den Winkel φ das Argument (oder
auch die Phase) von z.



7.2 Definitionen 77

Umrechnung kartesische Koordinaten - Polarkoordinaten

Beispiele:

1. z = 1 + i
√

3 ⇒ r =
√

12 + (
√

3)2 = 2 und φ =arccos(1
2) =

2. z = −1 + i
√

3 ⇒ r =
√

1 + 3 = 2 und φ =arccos(−1
2) =

3. z = −1 − i
√

3 ⇒ r =
√

1 + 3 = 2 und φ = −arccos(−1
2) =

4. z = 1 − i
√

3 ⇒ r =
√

1 + 3 = 2 und φ = −arccos(1
2) =
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7.3 Grundrechenoperationen

Für die komplexen Zahlen sind die Grundrechenarten definiert.
Es seien im Folgenden z1 = x1+i·y1 und z2 = x2+i·y2 ∈ C und k ∈ R

7.3.1 Addition

z1 + z2 = x1 + iy1 + x2 + iy2

= x1 + x2 + i(y1 + y2)

Beispiel:

(2 − i) + (−1 + 2i) =

7.3.2 Multiplikation mit einem Skalar

kz1 = k(x1 + iy1)
= kx1 + i · k · y1

Beispiel:

−2(1 + i) =

7.3.3 Multiplikation

z1z2 = (x1 + iy1)(x2 + iy2)
= x1x2 + iy1x2 + iy2x1 + i2y1y2

= (x1x2 − y1y2) + i(y1x2 + y2x1)

Beispiel:

(2 + i)(3 − 2i) = 6 − i − 2i2 =

7.3.4 Division

Für z2 ̸= 0 ist:

z1
z2

= x1 + iy1
x2 − iy2

= (x1 + iy1)(x2 + iy2)
(x2 − iy2)(x2 + iy2)

= x1x2 − y1y2 + i(y1x2 + y2x1)
x2

2 + y2
2

= x1x2 − y1y2
|z2|2

+ i · y1x2 + y2x1
|z2|2

Beispiel:
2 + i

1 − 2i
=
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7.3.5 Graphische Darstellung der Grundrechenoperationen

Addition

Die Addition komplexer Zahlen entspricht der Vektoraddition.

Multiplikation

Die Multiplikation zweier komplexer Zahlen in der komplexen Ebene entspricht einer
Drehstreckung , d.h. die Winkel werden addiert und die Beträge multipliziert. Dies

wird nach Einführung der e-Funktion weiter unten klarer werden.

Division

Bei der Division zweier komplexer Zahlen in der komplexen Ebene werden die Winkel
subtrahiert und die Beträge dividiert.

7.3.6 Potenzieren und Wurzelziehen

Potenzieren:

Die n-te Potenz einer komplexen Zahl z = rcosφ+isinφ berechnet sich zu:

zn = rn(cosnφ + isinnφ)

oder für die algebraische Form z = a + ib zu

zn =
n∑

k=0

(
n

k

)
an−k(ib)k

Dabei ist
(

n

k

)
= n!

k!(n − k)! (der Binomialkoeffizient).
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Beispiele:

1. i3 =

2. i4 =

3. i5 =

4. i12 =

5. i33 =

Wurzelziehen:

Als die n-ten Wurzeln einer komplexen Zahl z ∈ C bezeichnet man die Lösungen der
Gleichung zn = a.

Die n-ten Wurzeln n
√

z einer komplexen Zahl z = rcosφ + isinφ berechnen sich wie folgt:

n
√

r
(
cosφ + k2π

n
+ isinφ + 2kπ

n

)
für k = 0,1,2, ..., n − 1

7.4 Funktionen komplexer Zahlen

Eine komplexe Funktion ordnet einer komplexen Zahl eine weitere komplexe Zahl zu,
also:

f : z ∈ C → f(z) ∈ C

In der Regelungstechnik sehr verbreitet der Betrag (Frequenzgang) einer komplexen Zahl
(Übertragungsfunkton): |Gs| = |σ + jω|:

f : Gs ∈ C → f(|Gs|) ∈ R

Darstellung des Betrages (Amplitude) einer komplexen Übertragungsfunktion Gs im Fre-
quenzbereich. Technisch relevant ist nur der Abschnitt für σ = 0 sowie für Frequenzen
ω ≥ 0 und spiegelt den Amplitudenverlauf dieses speziellen Übertragungssystems wider.
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7.4.1 Potenzfunktionen

f(z) = z2 = (x + iy)2 =
(
x2 − y2)+ i(2xy)

f(z) = z3 = (x + iy)3 = x3 + 3x2iy + 3xi2y2 + i3y3 =
(
x3 − 3xy2)+ i

(
3x2y − 3y3)

f(z) = 2z2 + z − 1 = 2
(
x2 − y2)+ i(4xy) + x + iy − 1 =

(
2x2 − 2y2 + x − 1

)
+ i(4xy + y)

f(z) = z3 − 1
z − 1 =

(
z3 − z + 1

) (
x2 − y2 − 2ixy − 2

)
((x2 − y2 − 2) + i2xy) (x2 − y2 − 2 − 2ixy)

7.4.2 Sinus-, Cosinus- und e-Funktion

Die folgenden Funktionen sind durch die Taylor-Reihe definiert.

• f(z) =sin z für z ∈ C

• f(z) =cos z für z ∈ C

• f(z) = ez für z ∈ C

7.4.3 Komplexe e-Funktion

Die komplexe e-Funktion lässt sich mit Hilfe der Eulerschen Formel (Beweis folgt später
mit Hilfe der Taylor-Reihen) leicht veranschaulichen.

Eulersche Formel:

eib =cos(b) + i·sin(b) für b ∈ R

Die Zahlen eib liegen also alle wegen

|eib| = |cos(b) + i·sin(b)| =
√

cos2(b) + sin2(b) = 1

auf dem komplexen Einheitskreis. Die reelle Zahl b gibt das Bogenmaß des Punktes
auf dem Einheitskreis an

Das Bild einer beliebigen komplexen Zahl z = a+ib unter der e-Funktion ist

ez = ea+ib = ea · eib = ea(cos(b) + isin(b))

ez ist also ein komplexe Zahl

mit Abstand ea vom Ursprung
und mit Bogenmaß b
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7.4.4 Anwendungsbeispiel aus der Elektrotechnik

An einem ohmschen Widerstand R wird die von der Zeit abhängige Wechselspannung
U = U0sin(ωt) angelegt (ω ist die Kreisfrequenz).

Aufgrund des Ohmschen Gesetztes ergibt sich für die Stromstärke

I = U

R
= U0

R
sin(ωt) = I0sin(ωt)

Spannung und Stromstärke sind in Phase.

Befindet sich an der Stelle des ohmschen Widerstandes R ein Kondensator mit der
Kapazität C, so wird der Stromfluss durch die entgegengesetzte Aufladung des Kondensa-
tors zur Spannungsquelle U = U0sin(ωt) begrenzt.

Zum Zeitpunkt der Maximalspannung U0 ist die Spannung am Kondensator konstant,
es fließt in den Kondensator keine Ladung. Fällt danach die Spanung ab, so wird der
Kondensator durch einen Strom in umgekehrter Richtung entladen. Die Stromstärke
erreicht ihr Maximum, wenn sich die Spannung am schnellsten ändert, also beim Wechsel
des Vorzeichens.

Dies bedeutet, dass die Stromstärke der Spannung um π
2 voraus eilt (φ = −π

2 ).
Die Stromstärke lässt sich also darstellen als:

I = I0sin(ωt − π
2 ) = I0cos(ωt)

Aus der Physik ist bekannt, dass die maximale Stromstärke

I0 = ω · C · U0

beträgt. Dies lässt sich durch komplexe Zahlen beschreiben:

Man interpretiert den Kondensator als komplexen Widerstand bzw. als Blindwiderstand

RC = 1
jωC

= − j

ωC
mit C Kapazität und ω Kreisfrequenz (ω = 2πf)

Die komplexe Wechselstromrechnung wird in der Elektrotechnik angewendet, um Strom-
stärke und Spannung in einem Netzwerk bei sinusförmiger Wechselspannung zu bestimmen.
Das Verhältnis der komplexen Spannung zur komplexen Stromstärke ist eine komplexe
Konstante. Dies ist die Aussage des ohmschen Gesetzes für komplexe Größen. Die Konstante
wird als komplexer Widerstand bezeichnet.

Der komplexe Widerstand einer Spule im Stromkreis ist

RL = jωL mit L Induktivität und ω Kreisfrequenz (ω = 2πf)

φ = π
2 → Bei Induktivitäten, Ströme sich verspäten.
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Anhang

8.1 Einheitskreis
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