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Vorwort

Das vorliegende Skript soll vorlesungsbegleitend dem Hoérer das Abzeichnen bzw. Ab-
schreiben der Inhalte ersparen. Falls eine Vorlesungsstunde versdumt wurde, kann der
Horer anhand des Skriptes ersehen, welcher Stoff z.B. mit einem Buch nachgeholt werden
sollte.

Bei allen Betrachtungen steht eine anschauliche Darstellung im Vordergrund. Es soll
versucht werden, dem Leser Hinweise zu geben, die ihm bei der Lésung der anstehenden
Problemstellungen niitzlich sind.

Insbesondere wird darauf hingewiesen, dass fiir die Priifung das selbstandige Losen der
Ubungsaufgaben nicht nur empfohlen, sondern vorausgesetzt wird!

¢ Bronstein u.a.: Taschenbuch der Mathematik Edition Harri Deutsch

e Wilhelm Leupold u.a. : Mathematik - ein Studienbuch fiir Ingenieure. Band 1 Carl
Hanser Verlag

e L. Papula: Mathematik fiir Ingenieure und Naturwissenschaftler. Band 1 Verlag
Vieweg

e Harro Heuser: Lehrbuch der Analysis. Teil 1, Springer Verlag
e B. Neumayer, S. Kaup: Mathematik fiir Ingenieure 1, Shaker Verlag Aachen

o www.wolframalpha.com

Musterlésungen fiir die Ubungsaufgaben, Formelsammlungen und Skript:

o www.Freiwilligschlauwerden.de
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KAPITEL 1

Vektorrechnung

1.1

Einfiihrung

Physikalische Grofien, wie Arbeit und Temperatur kénnen durch eine Zahl beschrieben
werden. Kraft, Geschwindigkeit und das elektrische Feld in einem Punkt sind jedoch durch
ihren Betrag und ihre Richtung definiert.

Um hierfiir ein mathematisches Werkzeug zu besitzen, wurden Vektoren eingefithrt. Vek-
toren sind Groflen, die durch Betrag und Richtung festgelegt sind. Mit Hilfe der Vektorrech-
nung kénnen z.B. folgende Groflen mathematisch beschrieben werden.

1.2

Addition von Kriften
Vervielfachung einer Geschwindigkeit
Zerlegung eines Feldes

Definitionen

Darstellung

Vektoren werden als Pfeile dargestellt und représentiert durch: @, g, c

Bei Angabe des Anfangspunktes A und des Endpunktes B (Pfeilspitze), werden
Vektoren als AB dargestellt.

Betrag eines Vektors
Der Betrag des Vektors entspricht der Lange des Pfeils. Fiir den Betrag des Vektors
d schreibt man |d|

Nullvektor
Ein Vektor mit Betrag 0, heit Nullvektor: 0

Einheitsvektor
Ein Vektor mit Betrag 1 heif3t Einheitsvektor.

—

. a
Zu jedem Vektor @ # 0 gibt es einen gleichgerichteten Einheitsvektor €, = ﬁ
a

Gleichheit

Zwei Vektoren heiflen gleich, wenn sie in Betrag und Richtung iibereinstimmen: @ = b

Kolineariat
Zwei Vektoren heiflen kolinear, wenn sie parallel oder antiparallel sind.



1.3 Darstellung von Vektoren im Koordinatensystem

e Vektoraddition

Zwei Vektoren @ und b werden addiert, indem man den Vektor b an den Endpunkt
des Vektors @ ansetzt. Der dann vom Anfang von d bis zum Ende von b fithrende

Vektor heifit der Summenvektor a@ -+ b

- b
T+ b
d
Fiir die Vektoraddition gelten:
Kommutativgesetz: i+b=b+a
Assoziativgesetz: a+(b+é)=(a+b)+c
Dreiecksungleichung: @+ b| < |a@| + |b]

e Multiplikation mit einem Skalar

Ist A € R, dann ist Ad ein Vektor, der parallel zu @ ist und dessen Betrag das A-fache

des Betrag von a ist.

Kommutativgesetz: Ad = a

Assoziativgesetz: AMpd) = (A\p)a

Distributivgesetze:  \(@+ b) = A\@ + \b
(A4 p)d = Ad + pa

1.3 Darstellung von Vektoren im Koordinatensystem

Zur rechnerischen Behandlung von Vektoren wird ein (zweiachsiges) dreiachsiges kartesisches

Koordinatensystem zugrunde gelegt.

Die Einheitsvektoren, deren Richtungen mit der positiven Richtung der x—,y— bzw. 2-
Achse tibereinstimmen, werden mit €, €, bzw. €, bezeichnet. Sie werden Basisvektoren

genannt.

Jeder Vektor @ # 0 kann eindeutig als Summe von Vielfachen der Basisvektoren dargestellt

werden:

@ = a,@, + ay@, + a.é.
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Da ein Vektor durch ein Zahlentripel a,,a,,a. gegeben ist, kann auch umgekehrt ein
Zahlentripel als Vektor gedeutet werden. Es wird daher als Schreibweise fiir Vektoren meist
eine einspaltige Matrix verwendet:

Qy

1.3.1 Basisvektoren

Fiir die Basisvektoren gilt:

1 0 0
gx = 0 ) ﬂy = 1 ) étz = 0
0 0
1.3.2 Betrag

Fir den Betrag eines Vektors folgt nach dem Satz des Pythagoras:
|@| = \/a2 + a2 + a2

1.3.3 Gleichheit

Aus der Definition der Gleichheit von Vektoren folgt fiir zwei Vektoren

d=b <= a; =b;, ay ="y, a, =0,

1.3.4 Addition

Die Summe zweier Vektoren @ und b berechnet sich als

Qg by ay + by
atb=1ay, |+| by | =] ay+by
Ay b, a, +b,

1.3.5 Multiplikation mit einem Skalar

Fir die Multiplikation eines Vektors mit einem Skalar erhalt man:
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1.3.6 Verbindungsvektoren

Ein Vektor welcher zwei Punkte verbindet:

by — ag
F=AB=b-a=| b,—a,
b, —a,

Vektoren sind im Gegensatz zu den Punkten im Raum nicht _absolut . D.h. eine
vektorielle Gréfe ist nur in Bezug auf Lange und Richtung, jedoch nicht beziiglich seiner
Position im reellen Raum definiert.

Sei ABC D ein Quadrat mit den vier Punkten A, B, C' und D, so gilt:

D C
AB= DC
BC= AD
A B

1.4 Lineare Abhangigkeit

1.4.1 Linearkombination:

Eine Linearkombination von endlich vielen Vektoren ist die Summe von beliebigen Vielfachen
dieser Vektoren. Die Vielfachen heiflen Koeffizienten.

1 1
7.B.ist ( 2 ) eine Linearkombination der Vektoren ( ) ) und ( 0 >,denn:

(2)-

Jeder 2-dimensionale, bzw. 3-dimensionale Vektor ist durch eine Linearkombination der
Einheitsvektoren €., €, bzw. €;, €, €, darstellbar.

Beispiel:
3 1 0 0
Der Vektor | 4 | soll als Linearkombination der Vektoren | 0 [, 1 Jund | 0O
5 0 0 1
geschrieben werden:
3
4 | =
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1.4.2 Lineare Abhangigkeit:

Vektoren ap, ds, ..., d, heiflen linear abhingig , wenn es Skalare aj, a9, ..., an
gibt, die nicht alle Null sind, so dass die Bedingung

a1ay + aods + ... + apdy, =0

erfiillt ist, d.h. einer der Vektoren ist als Linearkombination der anderen darstellbar.

Durch Verlangerung und
> w Verkilrzung der Vektoren
Schliefen der Vektorkette maglich

[+ a
o u -
v - / b
Linear abhangige Vektoren
1.4.3 Lineare Unabhangigkeit:
Vektoren ay, ds, ..., d, heiflen linear unabhingig , wenn die Bedingung
a1dy + agds + ... + apd, =0
nur fiir o = ag = ... = a,, = 0 erfiillt ist, d.h. keiner der Vektoren ist als Linearkombination
der anderen darstellbar.
. /
— W
T

Linear unabhéngige Vektoren
Beispiele

Sind folgende Vektoren linear unabhéngig?

1 0 0
L.lolf|,[1],]o0
0 0 1
2 1 3
2.1 1|,lo0],]1
1 1 2
3 13 12
3 d 2 |, 8
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1.5 Skalarprodukt

1.5.1 Motivation

Berechnung der Arbeit in der Physik:

Ein Koérper wird entlang der x-Achse bewegt, vom Ursprung bis nach s = 100 m. Hierfiir
wird eine Kraft F' =5 N eingesetzt, die im Winkel von o = 30° zur z-Achse am Koérper
zieht. Welche Arbeit wird hier verrichtet?

—

F
FL7'| FL7'
T | T y

Die Arbeit ergibt sich zu:
W = |F|-cos(a) - |31

Das Skalarprodukt zwischen zwei Vektoren ist nun genau so definiert, dass man hier kurz
W=F§

schreiben kann.

Also ergibt sich fiir die Arbeit im Beispiel oben:
W =5 N-cos(30°) - 100 m ~ 5 N-0.866-100 m= 433 Nm

1.5.2 Definition

Das Skalarprodukt zweier Vektoren ist definiert durch:

mit 0 < ¢ < 180°.

Das Ergebnis des Skalarprodukts ist, wie der Name sagt, ein Skalar, d.h. eine reelle
Zahl.

1.5.3 Eigenschaften

l.@-b=b-a Kommutativgesetz
@-(b+¢& =d-b+a-¢ Distributivgesetz
a-a=la?

0 @ ist senkrecht zu b (alternativ: @ L b)

D
gt
D
8
I
—_
™
<
®
<
I
—_
@
w
@
w
I
—_

N ok
S
Syl
I
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8. Der Winkel ¢ zwischen zwei Vektoren @ und b berechnet sich aus
b i

= (10,

| =

cosp =

RS

9. Die Projektionslénge a; eines Vektors @ auf einen Vektor b hat folgende Grofle:

-

. L b a
ap = |d|cosp = ad - = z .

1.5.4 Berechnung

Das Skalarprodukt zweier n-dimensionaler Vektoren berechnet sich zu

ao g: ai1by + asbs... + a,by,

denn:

Gob = (a181 + as@ + ... + anéyn) 0 (0181 + b2 + ... + by
= qi€10bie] +a1€1 0bséy + ... +a1€1 o b+

a9€9 0 b1€1 + ag€y 0 boey + ... + ag€y o b+

An€n © b1€1 + anéy © ba€s + ... + anéy, © bpén

= a1by + agbs... + anby,

1.6 Vektorprodukt

Das Vektorprodukt a x b zweier Vektoren @ und b ist nur im 3-dimensionalen Raum definiert.
Das Ergebnis ist wieder ein Vektor, daher der Name Vektorprodukt. Gelegentlich wird das
Vektorprodukt auch als Kreuzprodukt bezeichnet, da es durch ein Kreuz symbolisiert wird.
Folgende physikalische Grofen sind als Vektorprodukt darstellbar:

¢ Drehmoment einer an einem starren Korper angreifenden Kraft

o Drehimpuls eines rotierenden Koérpers
M

<

o Kraft auf einen stromdurchflossenen Leiter im Magnetfeld
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1.6.1 Motivation

Berechnung des Drehmoments in der Physik: An einem an einer Achse befestigter Hebel
der Lidnge s = 100 m greift eine Kraft FF =5 N an, die im Winkel von a = 30° zum Hebel
nach unten zieht. Welches Drehmoment tritt auf?

Das Drehmoment ist ein Vektor, der in das Blatt hinein zeigt und eine Lénge hat, die dem
Flacheninhalt des Parallelogramms zwischen § und F' entspricht.

|M| = [F|-sin(a) - |3]
= M =5 N-sin(30°) - 100 m = 5 N-0.5-100 m= 250 Nm
Das Vektorprodukt zwischen zwei Vektoren ist nun genau so definiert, dass man hier kurz

—

M = 5x F schreiben kann.

1.6.2 Definition

Das Vektorprodukt &= @ x b ist ein Vektor & mit folgenden Eigenschaften:

o | ist gleich dem Fliacheninhalt des von @ und b aufgespannten Parallelogramms:
el =|allblsing  (0° < ¢ < 180°)

o & steht sowohl auf @ als auch auf b senkrecht, d.h.
ga=¢eb=0

e Die Richtung von ¢ ist so festgelegt, dass d, b und @ ein Rechtssystem
bilden.

Rechtssystem:

Als Rechtssystem wird ein System aus drei Vektoren im 3-dimensionalen Raum bezeichnet,
wenn diese der Rechten-Hand-Regel entsprechen, d.h.

e Daumen in Richtung des ersten Vektors

o Zeigefinger in Richtung des zweiten Vektors

o Mittelfinger (rechtwinklig zum Daumen und Zeigefinger abgespreizt) zeigt bei einem
Rechtssystem in Richtung des dritten Vektors

axb* fh
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1.6.3 Regeln

° C_I: X 6 = 6

e ixda=0

« Axb=0

Kolinearitét (@, b parallel oder antiparallel, @ || b)
ix(b+d) =adxb+axc
(@+b)xc=dxc+bxc

Distributivgesetze

(AG) x b= \(@ x b) =@ x (\b) fiir alle A € R
Assoziativgesetz

axb=—(bxa)

antikommutativ

€r X €y = €,

Lagrange-Identitét:
(@xb)o(@xd)=(God)o(bod)— (bod) o (dod)

1.6.4 Berechnung

Das Vektorprodukt zweier 3-dimensionaler Vektoren berechnet sich zu

agbg — a3b2
a@xb=| agb —aibs
a1b2 — (Igbl
Merkregel:
aq by
az J+ L bo
a2 b3 -a3b2 1. Zeile
az b3
a3 bl -alb3 2. Zeile
a1, —>bq

ag” “~bo
Beispiele:
2 3
1. 4 | x| -2 | =
1 1
-2 2
2. -1 | x| 2 |=
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Beweis:

Axb = (418 + a2és + az@3) x (b1@ + baéy + bsés)

= a1€1 X b1€] + a1€1 X beéy + a1 X b3éz+ NR. e, xé&,=0
g€y X b1€1 + agey X boeh + agséy X b3esz+ €3 = €1 X €y
a3€3 X b1€1 + azes3 X boés + azeés X bsés —€9 = €1 X €3

51 = 52 X ét;

= 0+ a1b2€3 - albggz —53 = 52 X 51
— agblggg + 0+ a2b3€1 52 = 53 X 51

+ agbi€s — agboel + 0 —€1 = €3 X €y

= (agbz — agby)er + (asby — a1bz)és + (a1by — agby)es

azbs — azby
= adxb= agbl—albg
a1b2 — a2b1

1.7 Spatprodukt

Vektor- und Skalarprodukt sind {iber das Spatprodukt miteinander verkniipft. Das Spatpro-
dukt ist das Ergebnis aus dem Vektorprodukt zweier Vektoren und dem Skalarprodukt mit
einem dritten Vektor. Es beschreibt die Grofle des _ orientierten  Volumens des Paral-
lelepipeds (Spat), das durch die drei Vektoren aufgespannt wird.

Unter orientiertem Volumen versteht man dabei das Volumen multipliziert mit dem Faktor
+1, falls die Vektoren ein Rechtssystem bilden, und multipliziert mit -1, falls sie ein
Linkssystem bilden.

1.7.1 Definition

Das Spatprodukt dreier 3-dimensionaler Vektoren ist ein Skalar mit

@b, (@xb)oc €R

1.7.2 geometrische Herleitung
Das Volumen eines Spats errechnet sich aus dem Produkt seiner Grundfliche und seiner
Hohe.

V =Ah

Bekanntlich ist das Vektorprodukt @ x b genau der Normalenvektor auf der durch @ und b

aufgespannten Grundfliche und dessen Betrag gleich dem Flidcheninhalt dieser Fldche, also
A=d x bl
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Die Hohe des Spats ist die Projektion des Vektors ¢ auf die Richtung des Normalenvektors 17,
bzw. des Einheitsnormalenvektors 7.

Es folgt:
Loafa@xb O\ e Lo
V =Ah=|d x b of|=(@xb)oc=1abd
|d@ x b

1

o
Das Spatprodukt gibt das _orientierte Volumen des Spats an.

Einfache Berechnung:

Spatprodukt = Wert der Determinante

ap b
(6xb)o€: ag by cp |=ai-by-c3+by-ca-az+ci-ag-bg—ci-by-az—ay-co-bs—by-as-cy
az by c3

— siehe Determinanten im néchsten Kapitel.

Beispiel:
3 —4 7
a=1 -3 b= -7 c=1 2
4 2 2

-,

Spatprodukt: (@ x b) o & Determinante D
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Es gilt:
(@xb)od>0 <= @b, bilden ein Rechtssystem
(@xb)o@<0 <= @b, bilden ein Linkssystem

(@xb)od=0 <= @b,¢sind lincar abhéingig = __einfacher Test!

Beispiel:

Bilden die folgenden 3 Vekoren ein Rechtssystem und sind sie linear abhéngig?

3 . —4 7
a=1] -3 b=| -7 c=1 2

4 2 2
1.7.3 Regeln

e (@xb)od=(bxd)od=(Exd)ob = zyklische Vertauschung der Vektoren

(¢]
—
o
_l_
3
~—
I
—
Q
X
\_/l
(¢]
[
+
—~
QL
X
~—
O
S8

Distributivgesetz: (@ x b)
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1.8 Anwendungen in der Geometrie

Mit Hilfe der Vektorrechnung lassen sich im 3-dimensionalen Raum einfach Geraden und
Ebenen sowie ihre relativen Lagen vektoriell beschreiben.

1.8.1 Geradengleichungen
Punkt-Richtungs-Form

Eine Gerade im R? durch einen Punkt Xy und mit einem Richtungsvektor @ ist gegeben durch:

T=2p+Ad mit AeR

Hierbei ist & der Ortsvektor zu den Punkten X der Geraden.

x
Beispiel:
)
Bestimmen Sie die Gleichung der Geraden durch den Punkt (3| —2|1) in Richtung | 2
3

2 Punkteform

Eine Gerade im R? durch zwei Punkte X; und X5 ist gegeben durch:

f:fl+A(f2—f1) mit A € R

Hierbei ist & der Ortsvektor zu den Punkten X der Geraden.

Beispiel:
Bestimmen Sie die Gleichung der Geraden durch die Punkte (1|1]|1) und (2|0]4).
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1.8.2 Ebenengleichungen

Parameterform

Eine Ebene im R? durch einen Punkt X, und mit zwei linear unabhingigen Richtungsvek-
toren @ und b ist gegeben durch:

T==T)+Ad+pb mit A\, peR

Hierbei ist & der Ortsvektor zu den Punkten X der Ebene.

Normalform

Eine Ebene im R3 durch einen Punkt X und mit einem Vektor 7 , senkrecht zur Ebene,
ist gegeben durch:

|70 (7 — %) = 0

Koordinatenform

Durch

ar+by+cz=d

ist eine Ebene im R3 gegeben.

Beispiel:

Bestimmen Sie einen Normalenvektor zur Ebene, gegeben durch xy + 2x9 — 3z3 = 5.
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1.8.3 Abstandsbestimmungen

Abstand zweier Punkte:

Der Abstand zweier Punkte X; und Xs im R? oder im R? ist:

d = |73 — a1

Beispiel:
Bestimmen Sie den Abstand zwischen den Punkten (2]-5/3) und (2|-1|0).

Abstand zwischen Punkt und Gerade:

Der Abstand zwischen einem Punkt X; und einer Gerade & = @ + A@ im R? ist:

Beispiel:
Die Gleichung einer Geraden lautet

1 2

=1 0 | +A| 5 |.Bestimmen Sie den Abstand des Punktes (5|3|-2) von dieser Geraden.

1 2
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Abstand zwischen zwei Geraden

Zwei Geraden im R? konnen zueinander folgendermafen liegen:

g1 L /
g1
g2 i
g2

Geraden schneiden sich  Geraden sind parallel Geraden sind windschief Geraden sind identisch

Abhéngig von dieser Lage wird der Abstand bestimmt:

Fir zwei nicht parallele Geraden, die sich schneiden, berechnet sich der Schnittpunkt
T1 + A\dl = 25 + Aodd
und der Schnittwinkel:

— —

1 0ay = |aj||aa|cose

Der Abstand zweier paralleler Geraden mit den Gleichungen
T=x1+Mdund Z =25 + \od

z
|

Der Abstand zweier windschiefer Geraden mit den Gleichungen
T =21+ Aal und ¥ = 25 + Agas ist:

—

g @ =)o (a

1)(03)‘
|(d1 x a3)]

Beispiel:

Gegeben sei g1 ==& = (—1|3| — 1) + A1(—2|3]1) und g2 : Z = (5] — 2| — 3) + A2(—8]4|2)
Untersuchen Sie, ob ¢g; und go gemeinsame Punkte haben und bestimmen Sie ggf. den
Schnittpunkt.



18 1 Vektorrechnung

Abstand zwischen Punkt und Ebene

Der Abstand zwischen einem Punkt X7 und einer Ebene in Normalform

no (T —xp) =0 ist:

d= W = |fip o (&1 — Zp)| Hessesche Normalform (mit Tip = %)
nl
X1
d
E
Beispiel:
1
Die Ebene E enthélt den Punkt (1|0/9) und ihr Normalenvektor ist @ = [ 3
5

Bestimmen Sie den Abstand des Punktes (-2|1|3) von dieser Ebene.
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Abstand zwischen einer Geraden und einer Ebene

Eine Gerade und eine Ebene konnen

1. sich in einem Punkt schneiden, d.h. der Richtungsvektor der Geraden ist nicht
senkrecht zum Normalenvektor der Ebene

2. parallel liegen, d.h. der Richtungsvektor der Geraden und der Normalenvektor der
Ebene sind senkrecht

3. in einer Ebene liegen

S,
E E E g
/s

Gerade schneidet Ebene Gerade ist parallel zur Ebene Gerade liegt in der Ebene

Abhéngig von dieser Lage wird der Abstand bestimmt:

Fiir eine Gerade Z = 2] + Ad und eine Ebene 7 o (¥ — 2p) = 0 , die sich schneiden,

berechnet sich der Schnittpunkt aus:

Der Abstand zwischen einer Geraden mit der Gleichung
r=a1+Ad
und einer zu ihr parallel liegenden Ebene mit der Gleichung

—

no (T —xp) =0 ist:
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Abstand zwischen zwei Ebenen

Zwei Ebenen konnen

1. parallel liegen, d.h. die Normalenvektoren sind linear abhéngig

2. identisch sein

3. sich in einer Geraden schneiden, d.h. die Normalenvektoren sind nicht linear abhéngig

E,

E1 El

E1:E2

Es

Ebenen sind identisch

Ebenen sind parallel Ebenen schneiden sich

Abhéngig von dieser Lage wird der Abstand bestimmt:

Der Abstand zweier paralleler Ebenen mit den Gleichungen
nj o (¥ — 1) =0 und nj o (¥ — x3) =0 ist:

ny o (25 — 27)]

i ‘

[\

|7l

—_

Zwei Ebenen, deren Normalenvektoren nicht linear abhéngig sind, schneiden sich
in einer Geraden. Fiir die beiden Ebenen mit den Gleichungen

njo(Z¥—21) = 0 und nyo(Z—a3) = 0 lasst sich die Schnittgerade und der Schnittwinkel

berechnen:

Die Schnittgerade ergibt sich aus:

Z=2x0+Ad mit ng

a=nj Xny F
und \

njo(zp—21) =0 und nj o (25 — 22) =0 Schnittgefg;l; E.

Der Schnittwinkel ergibt sich zu:

11 0 13
|—» —

1]|m2|

[\

cosp =




KAPITEL 2

Matrizen und Determinanten

2.1 Matrizen

2.1.1 Einfiihrung

Fine Matrix ist ein Werkzeug, mit dessen Hilfe lineare Zusammenhénge zwischen vielen
Variablen iibersichtlich geschrieben und umgeformt werden kénnen. Eine Matrix ist eine
Tabelle von Zahlen oder anderen Grofien.

Zum Beispiel kénnen die Koeffizienten des Gleichungssystems:

2u+bv—3w—x+3y+72=0
ou—v+x+2y—952=0
qv—-2w+3rz—y+22=0

in folgender Gestalt (Matrix) zusammengefasst werden:

2 5 -3 -1 3 710
5 =1 0 1 2 =510
o 4 -2 3 -1 210

2.1.2 Definitionen

Matrix

Unter einer Matrix vom Typ m xn versteht man ein geordnetes Schema von m-n Zahlen, die
in m Zeilen und n Spalten dargestellt sind. Die Zahlen nennt man die Elemente der Matrix.
Matrizen werden meist durch Grofibuchstaben abgekiirzt.

ail ai19 e Q1k e Qnp

asy a9 N e Q9p
A= (amn) =

aj1 a2 ... Gk «ee Qjn

aml1 Qm2 ... Amk -« Qmn

heifit m x n-Matrix.

Das Element a;;, steht in der j-ten Zeile und der k-ten Spalte.

21
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Die Elemente der Matrix kénnen reell oder komplex sein. Im Folgenden betrachten wir
jedoch nur Matrizen mit reellen Elementen.

Beispiele:
1. A:(2 5 -3 1 3 7)isteineix£—l\/[atrix.
2. A= ( 1 ) ist eine 1 x 1 -Matrix.
1
3. A= 0 | ist eine 3 x 1 -Matrix.
1

1 2 4 0 . . .
4.A—<2 01 5>1ste1ne2><4—Matr1X.

Quadratische Matrix:

Eine Matrix mit m = n heiit quadratische Matrix.

Transponierte Matrix:

Die zu einer gegebenen Matrix A transponierte Matrix AT entsteht aus A durch
Vertauschen der Zeilen und Spalten.

Beispiel:
1 47

A= 2 5 8 | AT =
3 69

Diagonalmatrix

Eine quadratische n x n-Matrix A heifit Diagonalmatrix, wenn nur die Diagonalelemente
apr fir k£ = 1,..,n ungleich 0 sind.
Beispiel:

A=

Einheitsmatrix

Eine Diagonalmatrix mit a;, = 1 fir £ = ¢ und a;; = 0 fiir k # 4 heifit Einheitsmatrix F,.

E, =
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Dreiecksmatrix

Eine quadratische Matrix heifit _ untere  Dreiecksmatrix, wenn alle Elemente oberhalb
der Diagonalen 0 sind: a;, = 0 fir i < k.

Eine quadratische Matrix heift _ obere  Dreiecksmatrix, wenn alle Elemente unterhalb
der Diagonalen 0 sind: a;; = 0 fir ¢ > k.

Beispiele: Je eine untere und eine obere Dreiecksmatrix:

Symmetrische Matrix

Eine quadratische n x n-Matrix heifft symmetrisch, wenn
a; = ag; fur alle 1,k = 1,...n

gilt.

Beispiel:

As =

2.1.3 Rechenoperationen

Gleichheit

Zwei m x n-Matrizen sind gleich, d.h. A = B, falls
a;p, = by, fir allei =1..m und k = 1..n gilt.

Addition

Zwei m x n-Matrizen A und B werden addiert, indem man die entsprechenden Matrixele-
mente addiert

A+B =C = (¢i) mit i = ap+by, firallei,k=1,..n

Beispiel:

15 3 51 3
A_<408)’ B_<1 4 7) = A+B=
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Multiplikation mit einem Skalar

Eine m x n-Matrix A wird mit einem Skalar A € R multipliziert, indem man jedes
Matrixelemente mit dem Skalar multipliziert.

AA = (Aagk)
Beispiel:

1 5 3
A_<408> = 4.-A=

Multiplikation zweier Matrizen

Eine m x n-Matrix A wird mit einer n x p-Matrix B multipliziert, indem man jede Zeile
der Matrix A mit jeder Spalte der Matrix B multipliziert.

Das Ergebnis C' = A - B ist eine m x p-Matrix mit

m
ik = Y aijbjk = anbig + abok + ... + ainbny
j=1

‘ A . B = C

Typen:‘mxn nxp mXp

Typvertréiglichkeit: Spaltenzahl links = Zeilenzahl rechts

Falksches Schema: n p
p
b11 b1 b1p =
asr ... bgk bgp n
m m
bni . buk o bup A - B = C
ail aio e Q1np C11 C12 -« Cip
Zeile mal Spalte:
a;1 a;2 oo Qin Ci1l Cik -+ Cip k
k

Aml Am2 ... Qmn Cml Cm2 - Cmp . j =
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[ @11 @12 a3 b1
a1 Q22 @3 | X | b:
@31 Q32 Q33 ba1

Beispiel:
1
1 -3 2
A:( ) B-| s
0 2 1 4
AB =
BA =

2.1.4 Rechenregeln

by
b2
3

[ VR V)

S

a11b11 + @12b21 + @13b31  a11b1o + a12bao +
= az1b1y + a22ba1 + a23bar  a21b12 + az2bz + az3bsz
a31b11 + az2bay + azzbar  azibio + azabas +

b1
baz
baz

a13b32

a3zzbaz

1. Assoziativgesetz: (A+ B)+C =A+ (B+C)
A(BC) = (AB)C
2. Kommutativgesetz der Addition: A+ B=B+ A

Kommutativgesetz der Multiplikation gilt nicht,
im allgemeinen ist AB # BA. Z.B.:

1 4 -2
A= 0 1 1 |, B=
-3 2 5

3

0 1
-2 1 5
3 8

2

3. Distributivgesetz: A(A+ B) = AA + AB
AB+C)=AB+ AC
(A+ B)C = AC + BC
4. Transponieren: (A + B)T = AT + BT

AT = AT

(AB)T = BT AT

5. AE=A
6. FA=A

7. AB=0=% A=0oder B=0, denn z.B.:

12 10

4
—2

> = A-B=

a11b13 + a12b23 + a13ba3
a21b13 + a22b23 + a23ba3

a31b13 + a3zbaz + azzbas
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8 AB=AC und A# 0+ B =C, denn z.B.:
1 2 10 4 0 0

2.2 Determinanten

Eine Determinante ist eine spezielle Funktion, die einer quadratischen Matrix eine
Zahl zuordnet.

« Mit Hilfe von Determinanten kann man feststellen, ob ein lineares Gleichungssystem
eindeutig losbar ist.

e Das Vorzeichen der Determinante einer Vektorbasis, gibt die Orientierung der Vektoren an

e Determinanten werden zur Berechnung von Volumina in der Vektorrechnung verwendet

2.2.1 Definition

Eine Determinante ist eine Funktion auf quadratischen nxn-Matrizen A:

det: A — det(A) = |A| € R die folgendermafien berechnet wird:

Fir n=1:
A= (a1) |Al = an
Fiir n=2:
ail a2
A= |A| = 011022 — 012021
a21 Qa2
Fir n=3:
ail a2 ais
A= 21 G22 G23 |A| = 011022033 + @12023031 + @13021G32 — 13022031 —
a3y asz2 G33 (11023032 — A12G021033

Regel von Sarrus

Mit der Regel von Sarrus kann man sich die Gleichungen bis n < 3 sehr einfach herleiten.
Dabei schreibt man die ersten beiden Spalten der Matrix rechts neben die Matrix und bildet
Produkte von je 3 Zahlen, die durch die schrigen Linien verbunden sind. Dann werden die
von links oben nach rechts unten verlaufenden Produkte addiert und davon die von links
unten nach rechts oben verlaufenden Produkte subtrahiert.

+ + +
a a a a

1 \ §< 13 W/G 12
am/a22><a23 2 1\ 22
a,, a, a, 1
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Beispiel:
4 -5 1
0 4 2

1 -2 3
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Fiarn > 3:
ailr a2 ... Qin
asr a2 ... Qao2n
anl1 Aap2 ... Qapp

Man entwickelt die Determinante "nach einer Zeile oder einer Spalte”:
n
|A| = Z(—l)”jaij|Aij| (Entwicklung nach der j-ten Spalte)

=1
n

|A| = Z(—l)i+jaij|Aij| (Entwicklung nach der i—ten Zeile)

j=1
wobei A;; die (n — 1) x (n — 1)-Untermatrix von A ist, die durch Streichen der i-ten Zeile
und j-ten Spalte entsteht.

-+ -+
- 4+ -+
Vorzeichenschema

Beispiel:

4 -5 1

0 4 2| =

1 -2 3

2.2.2 Eigenschaften

Fir quadratische Matrizen A und B gilt:

1. |A] = |AT|, d.h. der Wert einer Determinante findert sich nicht, wenn Zeilen und
Spalten vertauscht werden.

B 8 3
- 5 2

8 5
3 2

Beispiel:

2. Bei Vertauschen zweier Zeilen (oder Spalten) andert die Determinante ihr Vorzeichen
3 7|
-1 4|

73

Beispiel: 4 1

3. Werden alle Elemente einer beliebigen Zeile (oder Spalte) einer Determinante mit
einem Skalar A multipliziert, so multipliziert sich die Determinante mit A.

Al 1
Beispiel: | A 0 1 |=
A1 0
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4. [NA| = \"|A|
d.h. wird eine n x n-Matrix A mit A\ multipliziert, so multipliziert sich ihre Determi-
nante mit \".

Beispiel: AA =

5. Der Wert einer Determinante dndert sich nicht, wenn man zu einer Zeile (oder Spalte)
ein beliebig Vielfaches einer anderen Zeile (oder Spalte) elementweise addiert.

Beispiel: Addieren Sie zur 1. Zeile von i | das 6-fache der 2. Zeile

—6
1

6. Fiir zwei Matrizen A,B gleicher Grofle gilt:
|AB| = |A]| B
AB| = |BA|

Beispiel: Nachweis von |AB| = |A||B| fir n = 2
7. |A" = |A|" firn € N

8. Die Determinante einer n x n-Dreiecksmatrix A besitzt den Wert
|A| = a11a22033...0nn

9. Eine Determinante besitzt den Wert 0, wenn sie eine der folgenden Bedingungen
erfiillt:

« alle Elemente einer Zeile (oder Spalte) sind 0

Beispiel: =0

=~ O =

1
0
5

w o w

o zwei Zeilen (oder Spalten) sind gleich

4

Beispiel: =0

GOt =

0
31
1 5

o zwei Zeilen (oder Spalten) sind zueinander proportional

1 4 10

. 5 20 5 0
Beispiel: 1 1 2 3 =0

1 0 11

o eine Zeile (oder Spalte) ist als Linearkombination der iibrigen Zeilen ( oder
Spalten) darstellbar.

1 15 1 1 )
Beispiel: | 1 0 2 |=0 2- {1 |1 +3-10 =] 2
1 2 8 1 2 8



30 2 Matrizen und Determinanten

2.3 Spezielle Matrizen

2.3.1 Reguldre Matrizen

Eine quadratische Matrix A heifit reguldr , wenn |A| # 0, andernfalls heifit sie
singular .

Beispiel:
4 -5 1

Die Matrix A= | 0 4 2 | ist regular.
1 -2 3

2.3.2 Inverse Matrizen

Gibt es zu der quadratischen Matrix A eine Matrix X mit
AX =XA=F,

so heifit X diezu A __inverse _Matrix, gekennzeichnet durch A=,

Anmerkungen

e Eine quadratische Matrix besitzt - wenn iiberhaupt - genau eine Inverse.
o Besitzt eine Matrix A eine inverse Matrix A~!, so heiit A invertierbar.

e Die Matrix A ist genau dann invertierbar, wenn A regulér ist.

Berechnung der Inversen

Fiir eine reguldre n x n-Matrix A lasst sich die inverse Matrix folgendermaflen berech-
nen:

An A . An
A1 1 A A o Ap
Aln AQn Ann
Dabei bedeuten:

A = (=1)""* Dy,

D;jj. : (n — 1)—reihige Unterdeterminante von A, d.h. in A wird die i-te Zeile und die
k-te Spalte gestrichen.

Wichtig: Beachten der Zeilen- und Spaltenindizes (transponiert zur Ausgangsmatrix a; j)!
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Beispiel:
1 0 —1
Die 3-reihige Matrix A = | —8 4 1 ist wegen detA = —1 # 0 regular
-2 1 0
4 1 -8 4
det A=1| ] O‘—0+(—1)- Ty 1 |=1e(ss) =1
Doy — 4 1 _ 1 D — -8 1 _ 5 Dia — -8 4 — 0
11 — 1 0 - k) 12 — _2 0 s 13 — _2 1 - ’
Dot — 0 -1 1 D, — 1 —1 5 Do 1 0 _
20 =1, ol =1 Pa=1_, 0 » Ds=| , |=1
0 -1 1 -1 1 0
D3y = — 4, Diy; = = —7. Di; = —4
31 4 1‘ , D3 g ]‘ , D3j 8 4
Aig = +Dyp = —1, Ajp = =Dy = =2, A3 =+4+D3 =0,
Axi = —=Doy = —1, Axpy = +Dyp = -2, Az =—Dy3 =-1,
Az; = + D3 = 4, A3y = —D3p =17, A3z = + D33 = 4
Die zu A inverse Matrix A~ lautet somit:
. A Az Aszg . -1 -1 4
Al = | Al A A =— .| -2 =2 7] =
oA 12 Az Az 1
Az Az Aszg 0 -1 4
1 -1 4 11 —4
= 1-|-2 —2 7] =2 2 -7
0O -1 4 0O 1 -4
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2.3.3 Orthogonale Matrizen

Eine quadratische Matrix A heifit orthogonal, wenn

bzw. mit A-A~l= AAT —

Beispiele:
1. A=F
11
2.,4:( % ﬁ)
V2 V2

Eigenschaften

1. Betrachtet man die Zeilen (bzw. Spalten) einer othogonalen Matrix als Vektoren, so
sind diese orthonormiert.

2. Fiir orthogonale Matrizen ist |[A| = 1 oder |A| = —1 denn: 1 = |E| = |AA7!|.

3. Die Umkehrung obiger Aussage gilt nicht, d.h. es gibt Matrizen A mit |A| = —1 oder
|A| = 1, die nicht orthogonal sind.

2.4 Rang einer Matrix

Eine beliebige n x m-Matrix A kann man als Anordnung von Spaltenvektoren bzw. Zeilenvek-
toren sehen. Diese Vektoren konnen linear abhéingig oder linear unabhangig sein.

2.4.1 Definition

Die grofite Anzahl r linear unabhéngiger Spaltenvektoren einer n x m-Matrix A
bezeichnet man als

Rang von A, kurz: rg(A) (engl. rank)

2.4.2 Regeln

1. Die grofite Anzahl linear unabhéngiger Zeilenvektoren ist ebenfalls 7.

. (1 11
Beispiel: A_<O 0 1)

2. Die n x n-Matrix A ist genau dann invertierbar, wenn rg(A) = n gilt.

3. Der Rang einer Matrix &ndert sich nicht, wenn:

o zwei Zeilen (oder Spalten) miteinander vertauscht werden
o die Elemente einer Zeile (oder Spalte) mit einem Skalar # 0 multipliziert werden

o zu einer Zeile (oder Spalte) ein Vielfaches einer anderen Zeile (oder Spalte)
addiert wird
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2.4.3 Rangbestimmung

Die m x n-Matrix A wird durch Umformungen (s.o.), die den Rang nicht &ndern, auf
Trapezform gebracht:

bin b2 ... bir big41 ... bip
0 boy ... by b27r+1 . bop
0 0 o by broisss o b
0 o .. O 0 .. 0
0 o .. O 0 .. 0

mit m — r Nullzeilen.

Der Rang von A ist gleich der Anzahl r der nicht verschwindenden Zeilen, rg(A) = r

Beispiele:

Bestimmen Sie den Rang nachfolgender Matrizen:

1 1 1 0

1. A= 2 1 1 3 - I"g(A) =
1 2 0 3
1 3 -5 0

-1 0 11 21



KAPITEL 3

Lineare Gleichungssysteme

3.1 Einfiihrung

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat folgende Gestalt:

a1y + appzre + ... + aipxTn, = C1
as1r1 + axre + ... + agpxry, = C2
ami11 + amaxre2 + ... + ampnTn, = Cp

Folgende Fragen werden in diesem Kapitel beantwortet:

o Existenz einer Losung, d.h. gibt es eine Losung?
e Dimension der Losungsmenge

o Losungsalgorithmus

Die Antworten werden mit Hilfe der Matrizeneigenschaften gegeben, denn obiges Glei-
chungssystem lasst sich durch Matrizen beschreiben

Ar =c
air a2 ... Qip T c1
mit A= | % 2 o G e=] "2 und c= |
am1l Am2 ... Gmp Tn Cn

3.2 Definitionen

e« homogenes Gleichungssystem
Ax =0

e inhomogenes Gleichungssystem
Ax =c mit ¢#0

e quadratisches Gleichungssystem

A ist eine quadratische Matrix

34
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Beispiele:
1. 21 — 229 4+ 23 =
T1 + x9 — 43 =

A=

2. xo —2x3+21 =0
T3+ x9 —4r1 =0

A=

3. x1 —2x04+ 123 =1
T+ 19 — 43 =8
T+ 3x9 + a3 = 2
1+ 29 — 43 =0

A=

3.3 Losungsverhalten

3.3.1 Losbarkeit

e Ein homogenes lineares Gleichungssystem
ist immer l6sbar. Eine Losung ist

=0

rg(A) = rg(Al)
ail ai19 aln
mit I'g(A’é) = rg az1 a2 aon

aAml am2 ... Qmn

o Ein beliebiges lineares Gleichungssystem ist genau dann l6sbar, wenn

C1
C2

Cm
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3.3.2 Losungsmenge

Falls das lineare Gleichungssystem, mit n Unbekannten, 16sbar ist, ldsst sich eine Aussage
iiber die Dimension der Losungsmenge machen:

.« rg(4) = rg(A17) = n
dann besitzt das lineare Gleichungssystem genau eine Losung
.« rg(4) = rg(A17) < n

dann besitzt das lineare Gleichungssystem unendliche viele Losungen

rg(A) = rg(A|é) = n — 1 | Losungsmenge ist eindimensional

rg(A) = rg(A|¢) = n — 2 | Losungsmenge ist zweidimensional

o 1g(A) # 18(Al0)

dann besitzt das lineare Gleichungssystem keine Losung

3.3.3 Losungsberechnung - Cramersche Regel

Die Cramersche Regel oder Determinantenmethode ist eine mathematische Formel fiir die
Lésung eines linearen Gleichungssystems. Sie ist bei der theoretischen Betrachtung linearer
Gleichungssysteme hilfreich.

Die Cramersche Regel ist nach Gabriel Cramer benannt, der sie im Jahr 1750 verdffentlichte,
jedoch wurde sie bereits vorher von Leibniz gefunden.

Gegeben sei ein lineares Gleichungssystem der Dimension n x n in Matrixschreibweise
Az =b.

Ist die quadratische Koeffizientenmatrix A regulér, also det(A # 0), dann ist das Gleichungs-
system eindeutig l6sbar und die Komponenten z; des eindeutig bestimmten Losungsvektors
x sind gegeben durch:

. det(AZ)

T, = det(A) fir alle <.

Hierbei ist A; die Matrix, die gebildet wird, indem die i-te Spalte der Koeffizientenmatrix
A durch die rechte Seite des Gleichungssystems b ersetzt wird:

a1 ... aii—1 br oariyr .. aig

as1 ... az;—1 bz a1 ... agp,
A= (amn) = .

an1 ... Qng-1 bn ani+1 - Qdnn

Nachteil der Cramerschen Regel:
Fir die Berechnung einer Lésung ist der Rechenaufwand jedoch in der Regel zu hoch.

Bei der Berechnung einer n x n-Matrix auf einem Rechner mit 10% Gleitkommaoperationen
pro Sekunde (100 Mflops) wiirden sich die folgenden Rechenzeiten ergeben:

n 10 12 14 16 18 20
Rechenzeit | 0.4 s | 1 min | 3,6 h | 41 Tage | 38 Jahre | 16000 Jahre
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Beispiel:
Cramersche Regel an einem Beispiel von 2 Gleichungen mit 2 Unbekannten: Wir betrachten
das Gleichungssystem

521 + 22, = 1
2:1}1 + 4372 = 6

5 2 1
A= ( 9 4 > und b= ( 6 >
Wollen wir die Cramersche Regel zur Lésung dieses Gleichungssystems benutzen, so beniti-

gen wir die drei Determinanten det A, det Al( (1; ) und A2< é ), wie sie zu Beginn dieses
Abschnitts eingefiihrt wurden

. 12
detAl(a) ‘6 4‘ 1.4-2.6 4-12 -8 1
o= detA |5 2| b5-4—-2-2 20-4 16 2
N
~ detA2<6>_|2 6’_5-6—1-2_30—2_28_7
= det A _{5 2‘_5-4—2~2_20—4_1_6_Z'
2 4

3.3.4 Losungsberechnung - GauBBscher Algorithmus
Das gaufische Eliminationsverfahren oder einfach Gauf-Verfahren (nach Carl Friedrich
Gauf) ist ein Algorithmus zum Losen linearer Gleichungssysteme.

Durch schrittweises Eliminieren von Unbekannten aus einem gegebenen System wird ein
System in gestaffelter Form erzeugt, aus dem riickwérts rechnend die Unbekannten bestimmt
werden konnen. Erlaubt sind dabei folgende Umformungen:

o Zwei Gleichungen diirfen miteinander vertauscht werden
e Jede Gleichung darf mit einem beliebigen Skalar # 0 multipliziert werden

e Zu jeder Gleichung darf ein beliebig Vielfaches einer anderen Gleichung addiert werden

Es gibt verschiedene Varianten des Gauf}-Algorithmus, die hier vorgestellte ist die Sukzessi-
ve Elimination und Substitution. Das bedeutet, dass zunéchst in der Eliminationsphase im
Tableau eine Dreiecksform hergestellt wird, sodass eine Variable abgelesen werden kann.
Die Dreiecksform kann implizit oder explizit hergestellt werden (hier explizit).

X1 X2 X3 Xa | RS X1 X2 X3 Xa ‘ RS

an an ais au by 1 0 0 0 b1

0 a2 azs a4 bz —_ 0 1 0 0 bz

o] 0 ass assg b3 0 0 1 0 b3

0 0 0 1 bs 0 0 0] 1 ba
GauB GauBl-Jordan

Gauf3-Jordan Verfahren:

Dies ist eine Erweiterung des gaulschen Eliminationsverfahrens, bei dem in einem zusétz-
lichen Schritt das Gleichungssystem bzw. dessen erweiterte Koeflizientenmatrix auf die redu-
zierte Stufenform gebracht wird. Daraus l&sst sich dann die Losung direkt ablesen.
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Nachteile des Gauf3schen Algorithmus:

Das Gauflsche Eliminationsverfahren ist ein direktes Verfahren, das i.a. verwendet wird,
falls A eine vollbesetzte Matrix ist. Bei vollbesetzten Matrizen wachst der Rechenaufwand
des Gauflschen Eliminationsverfahrens mit bis zu der dritten Potenz der Anzahl der
Unbekannten (Schreibweise: W = O(N?) bis (N?)).

Ablauf anhand eines Beispiels

Aus folgendem Gleichungssystem sollen die Unbekannten x1, 2, x3, 4 bestimmt werden

2x1 + 4z + 6x3 4+ 214 = 14
1 — 29+ a3 — x4 =10

4x1 + 220 + 1423 + 2004 = —4
201+ Txo + 1023 — x4 = 4

1. Tabellenschema erstellen

2 4 6 2 14
1 -1 1 -1 10
4 2 14 2 A4
2 7 10 -1 4

2. Vereinfachung durch zeilenweises Kiirzen

1 2 3 1 7
1 -1 1 -1 10
2 1 7 1 -2
2 7 10 -1 4

3. Eliminieren der 1. Unbekannten mit Hilfe der 1. Gleichung

Die letzte Spalte beschreibt den Rechenvorgang

1 2 3 1 7 I

o -3 -2 -2 3 II-1

0 -3 1 -1 -16 III-21
0 3 4 -3 -10 IV-21

4. Eliminieren der 2. Unbekannten mit Hilfe der 2. Gleichung

1 2 3 1 7 I

0o -3 -2 -2 3 11

0o 0 3 1 -19 III-II
0o 0 2 -5 -7 IV+II

5. Eliminieren der 3. Unbekannten mit Hilfe der 3. Gleichung

1 2 3 1 7 I

o -3 -2 -2 3 II

o 0 3 1 -19 1III

0O 0 0 -17 17 3-IV-2.111

6. Schrittweises Einsetzen von unten nach oben —17x4 = 17 — x4 = —1
3r3—1=—-19 = 23 = —6

11
By 4+ 1242=3 =2y = —

22 56
nt g - 18-1=T=m =
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3.4 Spezialfall: quadratische lineare Gleichungssysteme

Von einem quadratischen Gleichungssystem ist die Rede, wenn die Zahl der Unbekannten
gleich der Zahl der Gleichungen ist. Ein Gleichungssystem dieser Form kann, wenn die Zeilen
oder Spalten linear unabhéngig sind, eindeutig gelost werden.

Die Besonderheit der quadratischen linearen Gleichungssysteme liegt in der Moglichkeit,
hierfir die Determinante berechnen zu kénnen, und diese zur Untersuchung des Losungs-
verhaltens heranziehen zu kénnen.

3.4.1 homogenes quadratisches lineares GLS

Genau eine Losung Unendlich viele Lésungen
x=0 n-rg(A) dimensional

Beispiel:

21 4+ 510 — 323 =0
4x1 —4axo +x3 =0
4r1 — 229 =0

3.4.2 inhomogenes quadratisches lineares GLS

rg(4) =n rg(A) = rg(Ale) rg(A) # rg(Ale)
Genau eine Losung unendliche viele Lésungen Keine Losung
xr=A"le n-rg(A) dimensional

Beispiel:
Priifen Sie nachfolgende linearen Gleichungssyteme auf Losbarkeit und berechnen Sie die

Losung mit Hilfe des GauBschen Algorithmus.

2x1 4+ 3x0 + 223 =2
—X1 — T2 —3%3 = -5
31+ 522 + 513 =3
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3.5 Rundungsfehler

Rundungsfehler kénnen bei linearen Gleichungssystemen, wenn man unbedacht vorgeht,
manchmal einen katastrophalen Einfluss haben. Man kann das bereits an sehr kleinen
Gleichungssystemen mit wenigen Unbekannten beobachten

Beispiel:

Wir betrachten das Gleichungssystem Az = b mit

2 101 252 | 9.57
0.4 0.203 -1.8]—-0.385
06 —1.05 08 | =3.85

Das GauBlsche Eliminationsverfahren liefert bei 4-stelliger Genauigkeit, d.h. mit dezimalen
Gleitkommazahlen, deren Mantisse vierstellig ist, die exakte Losung;:

1:1:1, $2:5, x3:1.

Wird die gleiche Rechnung jedoch mit 3-stelligen Gleitkommazahlen durchgefiihrt, so
kommt folgende, v6llig unsinnige Lésung heraus:

£1=2353, 39=0, &3 = 1.4

Mit geeigneten Varianten des Gaufischen Eliminationsverfahrens kann man derartige "Kata-
strophen” verhindern, und daran ist man in der Praxis natiirlich interessiert.

Wir werden hier keine derartigen problematischen Gleichungssysteme betrachten. Trotzdem
ist es interessant zu wissen, wann dieses Problem auftreten kann.

Bei zwei Gleichungen mit zwei Unbekannten beschreibt jede Gleichung eine Gerade. Sind
diese Geraden nahezu parallel, dann kénnen winzige Anderungen in den Koeffizienten
der Geradengleichung (oder entsprechend im gegebenen Gleichungssystem) dazu fuhren,
dass sich der Schnittpunkt der Geraden (d.h. die Losung des Gleichungssystems) erheblich
verschiebt.

Auch bei der zeichnerischen Loésung wird in derartigen Féllen die genaue Bestimmung des
Schnittpunktes zweier Geraden problematisch.

Analog ist es im dreidimensionalen Fall kritisch, wenn die Ebenen, die durch die Gleichungen
beschrieben werden, fast parallel sind, oder wenn die Schnittgeraden von je zwei Ebenen
nahezu parallel sind.
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3.6 Geschwindigkeit der Verfahren

Iterative Losungsverfahren:

In der Praxis hat A haufig eine spezielle Struktur und /oder ist schwach besetzt (engl. sparse),
d.h. die meisten Elemente von A sind 0. N ist eventuell sehr gro$}, z.B. 10°.

Dies bedeutet, dass man Gleichungssysteme mit einer Million von Unbekannten (oder
mehr) zu l6sen hat.

In solchen Féllen sind iterative Losungsverfahren eine interessante Alternative. Bei ihnen
startet man mit irgendeiner Startndherung fiir die Unbekannten (im Zweifelsfall nimmt
man an, dass alle Unbekannten 0 sind) und reduziert den Fehler sukzessiv durch eine
geeignete Iterationsvorschrift.

Als Beispiele sind das Jacobi-Verfahren, Gauss-Seidel- sowie SOR (Successive OverRelazation)
Verfahren genannt.

Aktuelle Mehrgitterverfahren bilden in der numerischen Mathematik eine Klasse von
effizienten Algorithmen zur ndherungsweisen Losung von Gleichungssystemen, die aus der
Diskretisierung partieller Differentialgleichungen stammen.

Es wird dazu auf die weiterfithrende Literatur verwiesen.

Geschwindigkeitsvergleich:

Betrachten wir ein lineares Gleichungssystem mit N = 10° Unbekannten. Die folgende
Tabelle vergleicht die fiir die Losung dieses Gleichungssystems bendtigte Anzahl an
Rechenoperationen und die benétigte Rechenzeit fiir verschiedene Verfahren auf einem
Standard-PC.

Sie gibt anschaulich die Leistungssteigerung wieder, die mit Hilfe von neuen Methoden der
Numerischen Mathematik erzielt wurde.

| Verfahren H Anzahl der Operationen | Rechenzeit |
Cramersche Regel ~ NI oo
Gaufisches
Eliminationsverfahren ~ N? 14 h

fiir Bandmatrizen
Uberrelaxationsverfahren,
SOR (1960)
Mehrgitter-Verfahren (1980) ~ N 1 sec

~ N5 5 min




KAPITEL 4

Lineare Abbildungen

Lineare Abbildungen, wie z.B. Projektionen, Drehungen, Spiegelungen, finden in zahlreichen
Bereichen Anwendung (z.B. Zoomen des Bildschirminhalts). In diesem Kapitel untersuchen
wir ganz allgemein lineare Abbildungen, die Vektoren aus dem n-dimensionalen Raum (R"™)
in einen m-dimensionalen Raum (R™) abbilden.

4.1 Definitionen

4.1.1 n-dimensionaler reeller Koordinatenraum 1
Der n-dimensionale reelle Koordinatenraum R™ ist die Menge der n-Tupel x =
L,

mit x; € R. Die Elemente des R" bezeichnet man als Punkte oder als Vektoren. Wie bei Vek-
toren gilt die Addition, die Multiplikation mit einem Skalar und das Skalarprodukt.

4.1.2 Lineare Abbildung

Unter einer linearen Abbildung
y= Az

versteht man die Transformation eines Vektors € R™ in einen Vektor y € R™ durch
Multiplikation mit einer Matrix A, ,.

A heifit Abbildungsmatrix.

Figuren aus E; ...

.. werden auf Figuren aus Fo
| abgebildet

//@ E2

42
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4.2 Beispiele

421 R—R

Bekannt sind die linearen Abbildungen von R in R . Letztere sind alle Funktionen f mit
f(z) =maz mit meR, fir allez € R

Mit der 1x1-Matrix A = (m) lésst sich dies in der Form:
y= Az

schreiben.

422 R? >R

Betrachtet man lineare Abbildungen vom R? in R, so kénnen diese folgendermafien be-
schrieben werden:

Yy = a1x1+asrs bzw.y = Ar mit A= ( a1 as ) und x = ( il )
2

Zum Beispiel ist y = z1 + x2 die Abbildung, die jedem Punkt (z;|z2) der reellen Ebene
den reellen Wert y zuordnet.

4.2.3 R?> > R?

Betrachtet man lineare Abbildungen vom R? in R?, so koénnen diese folgendermaBen
beschrieben werden:

Y1 = a1121 + a12T2
Yo = a2171 + a22%2
bzw.

y= Az mity—<y1>,A—<aH am)undx—<x1>
Y2 a1 a2 X9

Die Abbildungsmatrix A = < (1) g )

bildet jeden Punkt der Ebene auf sich selbst ab.

Die Abbildungsmatrix A = < (1) 8 >

projiziert jeden Punkt der Ebene senkrecht auf die x-Achse.

Die Abbildungsmatrix A = < _01 (1) )

spiegelt jeden Punkt der Ebene an der y-Achse.
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Abbildung Matrix
Spiegelung an N cos 2 sin 2p
der Geraden mit e A= ( % —cos 2 )
der Gleichung 44 A SHL S o8 29
Yy =m-x mit N
m =tan .

J | slg B

[<] %

Drehung um den
Ursprung mit B
Drehwinkel .

h.ri_'f
P
o

A A cos ¢ -sin
1 sin ¢ cos @

ckung mit dem
Ursprung als Zen- ol ot SN
trum und dem S - g’ '
Faktor k (k # 0). [11

Zentrische Stre- A ( k0 )

o
P
Il

dem Scherungs-
Winkel ¢ und der

—Achse als Sche- =-ZaAN|
x—Achse als Sche 2 GREE
rungsachse.

Scherung mit ] ( 1 tan ¢ )

4.2.4 R3 — R?

Drehungen im R3 werden in Drehungen um die Achsen zerlegt.

\

-+

Drehung um die z-Achse:

cos(a) —sin(a) 0
Drehmatrix D, = | sin(a) cos(a) 0
0 0 1
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n
Eine wichtige lineare Abbildung im R? ist die Drehung um eine Drehachse @ = | no

n3
um den Winkel a:

Die Drehmatrix der zusammengesetzten Drehung D5 erhalt man durch Matrixmultiplikation
aus den Matrizen der einzelnen Drehungen um die z, y, z- Achsen.

n3(1 — cosa) +cosac  nyna(1l — cosa) — ngsina nyn3(1 — cosa) + nosina
D = | nani(1 —cosa) +ngsina n3(1 — cosa) +cosa  cosa(l — cosa) — nisina
n3ni(1 — cosa) — ngsina ngna(1l — cosa) + nysine nd(1 — cosa) + cosa
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4.3 Eigenwerte, Eigenvektoren quadratischer Matrizen

Quadratische Matrizen beschreiben Abbildungen von einem Koordinatenraum in denselben
Koordinatenraum. Hierbei fiihrt folgende Fragestellung zur Betrachtung von Eigenvektoren
und Eigenwerten:

Die Darstellung ein und derselben physikalischen Grofe ist in verschiedenen Koordinatensys-
temen verschieden. Daher die Frage nach einem dem physikalischen Vorgang, bzw. der phy-
sikalischen Grole besonders angepassten Koordinatensystem.

Betrachtet man Abbildungen von einem Koordinatenraum in sich, so ist ein  Eigenvektor

dieser Abbildung ein vom Nullvektor verschiedener Vektor, dessen Richtung durch die
Abbildung nicht verdndert wird. Ein Eigenvektor wird also nur gestreckt. Man bezeichnet
den Streckungsfaktor als Eigenwert zum Eigenvektor.

AT = M

Sl
|
N
L
<y

QL

Eigenwerte charakterisieren wesentliche Eigenschaften linearer Abbildungen, etwa ob ein
entsprechendes lineares Gleichungssystem eindeutig l6sbar ist oder nicht. In vielen Anwen-
dungen beschreiben Eigenwerte auch physikalische Eigenschaften eines mathematischen
Modells.

Anwendungsbeispiele:

Schwingungsfidhige Systeme besitzen bevorzugte Frequenzen - Resonanzfrequenzen -, die
durch Eigenvektoren beschrieben werden kénnen.

Erwiinschte Resonanzfrequenzen: Musikinstrumente
Unerwiinschte Resonanzfrequenzen: Eigenschwingungen von Bauwerken

e Im Jahr 1850 marschierten 730 franzosische Soldaten im Gleichschritt iiber die
Héngebriicke von Angers. Die Briicke geriet in heftige Schwingungen und stiirzte
ein. Es ist heute verboten, vgl. §27 StVO, im Gleichschritt tiber eine Briicke zu
marschieren. (1883 — Broughton Suspension Bridge, Manchester)

e Die Hangebriicke iiber den Tacoma Narrows stiirzte 1940 ein, nachdem sie durch den
Wind zu immer stérkeren Schwingungen angeregt wurde.

Zum Schutz vor solchen Resonanzkatastrophen werden Konstruktionen auf eine Eigen-
schwingung ausgelegt, die typischerweise nicht im Betrieb auftritt. In Erdbebengebieten
richtet man sich dabei an die lokal typischen Schwingungsfrequenzen der Erderschiitte-
rung.
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Die Eigenwerttheorie liefert mathematische Losungsmethoden fiir diese und folgende
Themen

e Diagonalisierung symmetrischer Matrizen; vgl. Spannungstensoren
e Normalformen von Kegelschnitten, Ellipsoiden, etc.

e Losungen linearer Differentialgleichungssysteme, zB bei Schwingungen

4.3.1 Definitionen

Ist A eine Abbildungsmatrix vom R™ auf sich, und ist 0 # x € R™ mit
Axr =Xr mit A e R

So heifit  Eigenvektor zum Eigenwert

4.3.2 Berechnung

Methode zur Berechnung der Eigenwerte und Eigenvektoren einer quadratischen Matrix:
Es sei A eine n x n-Matrix.

Fir die Eigenvektoren und Eigenwerte der Matrix A gilt:

Ar = Mr
— Az — Xz = 0
<— Axr—)XEx = 0
<~ (A-XE)x = 0

Dies ist ein homogenes quadratisches lineares Gleichungssystem, welches immer x = 0 als
Losung hat.

Nicht triviale Losungen hat dieses Gleichungssystem genau dann wenn gilt:
(A= AE)| =0

Die Auflésung dieser Determinante liefert ein Polynom n-ten Grades fiir , das sogenannte
charakteristische Polynom

Das charakteristische Polynom, das fiir quadratische Matrizen von endlichdimensionalen
Vektorrdumen definiert ist, gibt Auskunft iber Eigenschaften einer Matrix oder einer
linearen Abbildung.

Die Losungen dieses Polynoms sind n (reelle und /oder imagindre) Eigenwerte

A1, A2, A3, Ap

Zu jedem dieser Eigenwerte kann der korrespondierende Eigenvektor berechnet werden,
durch Loésen des linearen Gleichungssystems

Arx— Nz =0, i=12,..n
Beispiel:
Berechnen Sie das charakteristische Polynom sowie die Eigenwerte und Eigenvektoren

folgender Matrix: A = < (1) g )
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Bemerkungen

1. Ist x ein Eigenvektor zum Eigenwert A, so ist auch kx ein Eigenvektor zum Eigenwert A

2. Als Losung wird tiblicherweise (vgl. Punkt 1) ein Vektor exemplarisch angegeben,
oder sogar der normierte Vektor.

3. Sind alle Eigenwerte voneinander verschieden, so gehort zu jedem Eigenwert genau
ein linear unabhéngiger Eigenvektor.

4. Tritt ein Eigenvektor k-fach auf, so gehoren hierzu mindestens ein, hochstens k linear
unabhéngige Eigenvektoren.

5. Die zu verschiedenen Eigenwerten gehorenden Eigenvektoren sind immer linear
unabhéngig

4.3.3 EW und EV einer Dreiecksmatrix

Ist A eine n x n-Dreiecksmatrix, so sind die Eigenwerte identisch mit den Hauptdiago-
nalelementen der Matrix A:

1= A fir ¢ = 1,2, ...n

4.3.4 EW und EV einer symmetrischen Matrix

Die Eigenwerte und Eigenvektoren einer symmetrischen n x n-Matrix A besitzen
folgende Eigenschaften:

o alle Eigenwerte sind reell
e es gibt genau n linear unabhangige Eigenvektoren

e zu jedem einfachen Eigenwert gehort genau ein linear unabhéngiger Eigenvektor,
zu jedem k-fachen Eigenwert gehoren genau k linear unabhéngige Eigenvektoren

o FEigenvektoren zu verschiedenen Eigenwerten sind orthogonal
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Folgen

Eine Folge ist eine geordnete und numerierte Liste von Zahlen, die entweder in aufzdhlender
Schreibweise oder durch eine Rechenvorschrift gegeben sein kann. Folgen kénnen gegen
einen Grenzwert konvergieren.

Die Theorie der Grenzwerte von Folgen ist eine wichtige Grundlage der Analysis, denn
auf ihr beruhen die Berechnung von Grenzwerten von Funktionen, die Definition der
Ableitung (Differentialquotient als Grenzwert einer Folge von Differenzenquotienten) und
der Riemannsche Integralbegriff. Wichtige Folgen erhélt man auch als Koeffizienten von
Taylorreihen analytischer Funktionen.

5.1 Definition

Eine Folge ist eine Abbildung f : N — R oder — C
Notation: a = (a,), wobei a,, das n-te Folgenelement ist.

5.1.1 Beispiele

Es sei a = (a,,) eine Folge mit
e ap=n Vn €N
e a, = l V neN

n
° an:(—l)n Vn EN

Arithmetische Folgen

Folgen deren Elemente folgendermafien berechnet werden

Ont1 — ap =d ‘ bzw. ’an =a;+(n—-1)-d ‘ bei beliebigem Anfangswert a; und Konstante d

heiflen arithmetische Folgen.

Bemerkung:
Jedes Folgenelement ist das arithmetische Mittel seiner beiden Nachbarn (ohne Be-
weis)

49
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_ Gp—1+an41
an = 72

Geometrische Folgen

Folgen deren Elemente folgendermafien berechnet werden

anp =ay-q" ! ‘ bei beliebigem Anfangswert a; und Konstante ¢

heiflen geometrische Folgen (oft auch fiir n € Ny als a,, = ag-¢™ bezeichnet).

Bemerkung:
Jedes Folgenelement ist das geometrische Mittel seiner beiden Nachbarn

An = 4/0n—1 * Qn41-

5.1.2 Definition monotone und beschrankte Folgen

Eine Folge (a;,) heifit

monoton wachsend wenn ay < a,, fir k < m.
monoton fallend wenn ay, > a,, fur k < m.
streng monoton wachsend wenn ag < a,, fiir £k < m.
streng monoton fallend wenn ag > ap, fir £ < m.
beschrankt wenn es eine Zahl M gibt mit |ax| < M V k€ N.

5.2 Konvergenz

5.2.1 Definitionen

o Eine Zahl g heifit Grenzwert oder Limes der Zahlenfolge (a,,), symbolisch
i, On = 9
wenn es zu jedem e > 0 eine natiirliche Zahl ny so gibt, dass |a, — g| < € fiir alle
n > ng gilt.
e Eine Folge mit Grenzwert 0 heif3t Nullfolge.

e Eine Folge heiit konvergent , wenn sie einen endlichen Grenzwert besitzt.

Andernfalls divergent
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5.2.2 Rechenregeln fiir konvergente Folgen

Seien (a,,) und (b,,) zwei konvergente Folgen mit lim a, = a und lim b, = b.
n—oo n—oo
Dann gilt:
o lim (ap, +by)=a+b
n—oo

o lim (apby,) = ab

n—oo
.Tg&(%):%Jﬂbb#Omm5n¢omrweneN

5.2.3 Folgen der Form p(n)/q(n)

Zur Bestimmung des Grenzwertes von Folgen der Form a, = p(n)/q(n), wobei p(n) und
g(n) Polynome der Variablen n sind, gibt es folgendes Vorgehen:

1
1. Man erweitert den Bruch mit — , wobei k& der héchste Exponent ist, der in den

ng
Polynomen p(n) und ¢(n) auftritt

n .

tim P gy 2

n—00 q(n) n—00 q(n) - =

2. Nun stehen in Zéhler und Nenner jeweils konvergente Folgen, deren Grenzwert
bestimmt wird:

- 1
_Jg&pm)nk_g
T L

Jim g(n) - or 4

3. Der Grenzwert der Folge (ay,) ist

' oo firg=0
nlggo In=92 fir ¢ #0
q

Beispiel:

. n?4+n+1
lim ——
n—00 n—1

Alternative: Satz von I’Hospital:

lim M = lim ')

A g) Al gy MO A0

Beispiel:

o on24n+1
lim ——
n—00 n—1
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5 Folgen

5.2.4 Eulersche Zahl (ohne Beweis)

n
1
lim <1 + > =e = 2,71828182...
n

n—oo

5.2.5 Konvergenzaussagen fiir monotone Folgen (ohne Beweis)

1. Eine monoton wachsende beschrinkte Folge ist konvergent

2. Eine monoton fallende beschrinkte Folge ist konvergent



KAPITEL 6

Funktionen

Unter einer Funktion versteht man eine Vorschrift f, die jedem Element x aus einer Defini-
tionsmenge D ein Element y aus einer Wertemenge W zuordnet.

Notation: m

Im folgenden betrachten wir nur eindimensionale reellwertige Funktionen, also Funktionen

f:R—R

6.1 Darstellungsformen von Funktionen

Es gibt unterschiedliche Darstellungsformen einer Funktion:

1. explizite Darstellung y = f(x)
Hier kann der Funktionswert y fiir jedes = direkt berechnet werden.

Beispiel:
y=2zr+3

2. implizite Darstellung F'(x,y) = 0

Hier kann der Funktionswert nicht direkt aus einer Zuordnungsvorschrift berechnet
werden, sondern nur indirekt tiber den Zusammenhang F(x,y) = 0.

Beispiele:
y—2x—3=0
22y =1

Es ist nicht immer moglich eine impizite Darstellung in eine explizite umzuformen.
3. Parameterdarstellung x = z(t),y = y(t)

Bei der mathematischen Beschreibung eines Bewegungsablaufs wird oft die Lage eines
Korpers durch seine Koordinaten (x,y), die sich mit der Zeit ¢ verandern, beschrieben.
Fine Darstellung dieser Art ist eine Parameterdarstellung.

Beispiele:
x(t) =cos(t) und y(t) =sin(t)
z(t) =12 — 1 und y(t) = t(t* - 1)

53
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6.2 Eigenschaften

6.2.1 Nulistellen

Eine Funktion y = f(x) besitzt an der Stelle x( eine Nullstelle, wenn f(zg) = 0.

6.2.2 (un-)gerade Funktionen

Eine Funktion f mit einem symmetrischen Definitionsbereich ID heifit

gerade, wenn f(—x) = f(z) fir jedes z € D
ungerade, wenn f(—x) = —f(x) fiir jedes x € D

Beispiel:

Die Funktion y =sin(z) ist ungerade .Die Funktiony =cos(x)ist  gerade .

6.2.3 monotone Funktionen

Eine Funktion f heifit

monoton wachsend wenn fiir alle a < b gilt:  f(a) < f(b)
streng monoton wachsend wenn fir alle a < b gilt: ~ f(a) < f(b)
monoton fallend wenn fiir alle a < b gilt:  f(a) > f(b)
streng monoton fallend wenn fiir alle a < b gilt:  f(a) > f(b)
konstant wenn fiir alle a, b gilt: fla) = f(b)
Beispiele: 2‘
f(r) =23 ist streng monoton wachsend 1
-1.0-705 05 10
-1

f(x) =1ist _ konstant

6.2.4 periodische Funktionen

Eine Funktion f heifit  periodisch  mit der Periode T, wenn mit jedem x € D auch
x £ T €D ist und es gilt:

fla+T) = f(x)

Beispiel:

Die Funktion f(x) =sin(2x) ist periodisch mit Periode T'= 7
y
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6.2.5 umkehrbare Funktion

Eine Funktion f heifit umkehrbar, wenn aus

x1,x2 € D mit z1 # xo stets f(x1) # f(x2) folgt.

Bestimmung der Umkehrfunktion

Ist die Funktion y = f(z) umkehrbar, so bestimmt man die Umkehrfunktion in folgenden
Schritten:

1. Vertauschen der Variablen x und y : x = f(y)
Dies ist die Umkehrfunktion in impliziter Schreibweise

2. Auflésen nach y (nicht immer moglich)
Dies ist die explizite Darstellung der Umkehrfunktion f~!(z)

Beispiele:

Ly=(x+1)2%firz>0

2. y=a>—2x+ 3 firz>2

6.2.6 Grenzwert einer Funktion

Fine Funktion f sei in einer Umgebung der Stelle xg definiert. Gilt dann fiir jede im
Definitionsbereich der Funktion liegende und gegen die Stelle xg konvergierende Zahlenfolge
(z5,) mit x,, # x( stets

Jim fzn) =g
so heiflt g der Grenzwert von f an der Stelle xg.
Notation: zlglg‘glo flx)=yg

Beispiele:

2_9
1. hm(x i
z—2 r —2
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Besitzt eine Funktion f die Eigenschaft, dass die Folge ihrer Funktionswerte (f(zy)) fir
jede wachsende Zahlenfolge (x,) € D gegen eine Zahl g strebt, so heifit g der
Grenzwert von f fiir x — oo.

Notation: xli)ngo flx)=g
Analog gilt:

Besitzt eine Funktion f die Eigenschaft, dass die Folge ihrer Funktionswerte (f(zy)) fir
jede fallende Zahlenfolge (z,,) € D gegen eine Zahl g strebt, so heifit g der
Grenzwert von f fiir x — —oo.

Notation: lim f(z) =g
T——00

Beispiele:

2 — 1
1. lim<x ):
T—00 x
3
2. lim < ”3 ):
z—=400 51:2—1—1

Rechenregeln fiir Grenzwerte

Falls die jeweiligen Grenzwerte existieren, gelten folgende Regeln:

1. lim (Cf(z)) = C( lim f(z)) fiir beliebige Konstante C
T—T0

T—T0

2. lim (f(z) £g(x)) = lim f(z)+ lim g(z)

T—T0 T—T0 T—T0

3. Jim (f(x)g(@)) = lim f(x) lim g(x)

T—TQ
lim f(z
4. lim /(@) =20 falls lim g(x) # 0
z—zo \ g(x) 1Lm g(x T
T—T0
Bemerkungen

¢ Diese Regeln gelten entsprechend fiir Grenzwerte vom Typ x — o0

0 o0
o Grenzwerte, die zu einem Ausdruck ”6” oder ”—7" fiithren, werden in Mathematik 2
o0
behandelt.

6.2.7 Stetige Funktionen

Eine in zg und in einer Umgebung von xg definierte Funktion f heifit an der Stelle zg
stetig , wenn der Grenzwert der Funktion an dieser Stelle vorhanden ist und mit dem
dortigen Funktionswert iibereinstimmt:

lim f(x) = f(zo)

T—rT0

Eine in zg und in einer Umgebung von zg definierte Funktion f heifit an der Stelle zq
unstetig , wenn eine der folgenden Aussagen zutrifft:
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1. Der Grenzwert von f an der Stelle xg ist zwar vorhanden, stimmt jedoch nicht mit
dem Funktionswert {iberein, d.h.

lim f(2) # f(xo)

2. Der Grenzwert von f an der Stelle xg existiert nicht.

Eine Funktion f heift stetig, wenn sie fiir jedes zg € D stetig ist.

6.3 Polynomfunktionen

6.3.1 Definition

Funktionen vom Typ
f(CC) = anxn + an—lxn_l + ...+ arx + ap

werden als ganzrationale Funktionen oder Polynomfunktionen bezeichnet.
Die Zahlen ag, a1,...a, € R heiflen _ Koeffizienten

Der hochste Exponent n in der Funktionsgleichung mit a, # 0 heifit _ Grad  des
Polynoms.

Bemerkungen

Polynomfunktionen besitzen viele besonders einfache und angenehme Eigenschaften:

Ein Polynom vom Grade n hat genau n (ev. komplexe) Nullstellen. Sie lassen sich problemlos
differenzieren und integrieren. Aus diesem Grunde versucht man die bei technischen Proble-
men auftretenden Funktionen durch Polynome zu approximieren.

Beispiele:

1. y=4

2. y=2z—-3

3. y=222—-3x+5
4. y =428 — 25+ 32

6.3.2 Spezialfall: Polynom 1. Grades

Polynome ersten Grades haben folgende Funktionsgleichung:
y=aix+ay oder y=mx+b

Der Graph ist eine Gerade mit Steigung m und y-Achsenabschnitt b. Abhéngig von der Pro-
blemstellung wird die Geradengleichung in folgenden Formen aufgestellt:
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o Punkt-Steigungs-Form: Gegeben ein Punkt (z1|y1l) und die Steigung m der Geraden:

Y=y _
xr — X
Yy

4
~

3

, 1
2 (x1,y1) m
1
X
0 1 2 3 3 5 6

o Zwei-Punkte-Form: Gegeben zwei Punkte (x1|y;) und (z2|y2) der Geraden:

Y-y _y2—wn
r — X Tro — T

/s

0 1 2 3 4 5 6 X

e Achsenabschnitts-Form: Gegeben die beiden Achsenabschnitte a der x-Achse und b
der y-Achse der Geraden:

xr Yy
I A |
a + b
! Yy 440 und b£0
4= a un
~.|B(0;b) a b
‘ P(x,y) auflésen nach y
b Px
p _ _r
| A(3;0) yb<1 a) =
a N

b
y:f(x):—ax+b
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6.3.3 Spezialfall: Polynom 2. Grades

Polynome zweiten Grades haben folgende Funktionsgleichung:
y = asx® 4+ a1z + ag oder y=azx?+bxr+c

Der Graph ist eine Parabel. Das Vorzeichen des Koeffizienten a entscheidet iiber die Offnung
der Parabel:

a > 0 Parabel nach oben geéffnet, Scheitelpunkt ist Tiefpunkt
a < 0 Parabel nach unten geéffnet, Scheitelpunkt ist Hochpunkt

Abhéngig von der Problemstellung wird die Parabelgleichung in folgenden Formen aufge-
stellt:

e Koordinatenform
y=azx?+bx+c
e Produktform
Gegeben a und die Nullstellen z1, z2 der Parabel:
y=a(z—x1)(x — x2)
¢ Scheitelpunktsform
Gegeben a und die Koordinaten des Scheitelpunktes S = (xg|yo) der Parabel:

Y —Yo Za(w—mo)Q

6.3.4 Nulistellen
Anzahl der Nullstellen

Ein Polynom n-ten Grades besitzt genau n eventuell komplexe Nullstellen, also héchstens
n reelle Nullstellen.
Mehrfach auftretende Nullstellen werden entsprechend oft mitgezéhlt.

Produktdarstellung

Sind die Nullstellen der Polynomfunktion n-ten Grades bekannt x1, xs,...x,, so ldsst sich
die Funktion auch in Form eines Produktes darstellen:
f(x) =apx™ + ap—12™ + ... + a1z + ag
=ap(z —x1)(x — 22)...(T — Xp)
Die n Faktoren x —x1, x — 2, ..., x —x, werden als Linearfaktoren der Produktdarstellung
bezeichnet.
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Bemerkungen

1. Bei einer r-fachen Nullstelle tritt der zugehorige Linearfaktor r-fach auf.

2. Ist die Anzahl der reellen Nullstellen k kleiner als der Polynomgrad n, so besitzt die
reelle Produktdarstellung folgende Form:

f(x) = an(z —21)(x = x9)...(x — 1) f* ()

wobei f* eine Polynom vom Grade n — k ohne reelle Nullstellen ist.

Nullstellenberechnung

Die Nullstellen einer Polynomfunktion f vom Grade n > 2 lassen sich schrittweise berechnen:
1. Im ersten Schritt wird durch Probieren versucht eine (reelle) Nullstelle x; als Faktor
von ag zu bestimmen.

2. Hat man eine Nullstelle gefunden, so wird die Polynomfunktion durch den Linearfaktor
x — x1 dividiert. Das Restpolynom hat einen Grad n — 1.

3. Durch Wiederholung der Schritte 1 und 2 wird so lange verfahren, bis das Restpolynom
vom Grad < 2 ist, wofiir es eine Berechnungsvorschrift fiir die Nullstellen gibt.

6.4 Gebrochen rationale Funktionen

6.4.1 Definition

Funktionen, die als Quotient zweier Polynomfunktionen g(z) und h(z) darstellbar sind,
heiflen gebrochen-rationale Funktionen:

g(x)  apa™+ Am_12™ 1+ .+ a1z +ag

h(z)  bpr by 4 g+ ag
Gebrochen rationale Funktionen sind fiir alle x € R, aufler den Nennernullstellen, defi-
niert.

Gebrochen rationale Funktionen heiflen fir

n > m echt gebrochen rationale Funktionen
n < m unecht gebrochen rationale Funktionen

Beispiele
3 =1
1. =
1(@) z+1
22+ 22+ 3
2. =
f@) 2+
z—1
3. f(z)



6.4 Gebrochen rationale Funktionen 61

6.4.2 Definitionsbereich, Nullstellen, Pole

1. Der Definitionsbereich einer gebrochen rationalen Funktion

f= % besteht aus allen reellen Zahlen aufler den Nennernullstellen, d.h.

D = R\{Nennernullstellen}

2. Die Nullstellen einer gebrochen rationalen Funktion f = % sind alle Zahlernullstellen
aus D, d.h. zp € D mit g(zo) = 0.

3. Definitionsliicken, in deren unmittelbarer Umgebung die Funktionswerte iiber alle
Grenzen wachsen heiflen Pole .

Vorgehensweise
Zur Bestimmung des Definitonsbereiches, der Nullstellen und der Pole einer gebrochen
rationalen Funktion, wird folgendermassen vorgegangen:

1. Bestimmung aller Nullstellen des Nenners, ergibt den Definitionsbereich

2. Bestimmen aller Zahlernullstellen im Definitionsbereich, ergibt die Nullstellen

3. Zerlegung von Zéhler und Nenner in Linearfaktoren und Kiirzen dieser Faktoren
soweit moglich

4. Die Nennernullstellen der gekiirzten gebrochen rationalen Funktion ergeben die Pole

5. Die Definitionsliicken, welche keine Pole sind, sind hebbare Liicken der Funktion

6.4.3 Asymptoten

Um das Verhalten einer gebrochen rationalen Funktion f fiir grofle x-Werte, d.h. fir
r — =£oo, zu bestimmen, wird die gebrochen rationale Funktion durch Polynomdi-
vision in eine Summe aus Polynom p und echt gebrochen rationale Funktion r zer-
legt.

f(x) = p(x) +r(z)
Da die echt gebrochen rationale Funktion r fiir grofie x gegen 0 konvergiert,

lim r(z) =0

r—+o00

néhert sich die gebrochen rationale Funktion fiir grofie  dem Polynom an. Man nennt p(z)
die Asymptote von f.

f(x) = p(z) fir x — +o0,

Bemerkung

An den Polstellen x; spricht man ebenfalls von Asymptoten x = x;
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6.5 Potenzfunktionen

Potenzfunktionen sind vom Typ
f(z)=2" mit  >0undr € R

r=necN

f(x) = 2™ ist eine Polynomfunktion

r=-néeN

1
f(2) = —- ist eine gebrochen rationale Funktion
T

1
r=—mitn N
n

f(x) = Yx mit 2 > 0 ist eine Wurzelfunktion

m .
r=—mitnmeN
n

f(x) = Va™ mit x > 0 ist eine Potenzfunktion

mit rationalem Exponenten

reR

f(ﬂ) = " = ena" — grinz

ist eine Potenzfunktion mit beliebigem reellen Exponenten
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6.6 Trigonometrische Funktionen

6.6.1 Definition

Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechne-
rische Zusammenhénge zwischen Winkel und Seitenverhéltnissen (urspriinglich in recht-
winkligen Dreiecken). Tabellen mit Verhéltniswerten fiir bestimmte Winkel erméglichen

Berechnungen bei Vermessungsaufgaben, die Winkel und Seitenldngen in Dreiecken nut-
zen.

Die trigonometrischen Funktionen sind auflerdem die grundlegenden Funktionen zur Be-
schreibung periodischer Vorgénge in den Naturwissenschaften.

Sie finden u.a. Anwendung bei
e mechanischen und elektromagnetischen Schwingungen
o gekoppelten Schwingungen
e Ausbreitung von Wellen

Die 4 trigonometrischen Funktionen Sinus, Kosinus, Tangens, Kotangens sind folgen-
dermaflen im rechtwinkligen Dreieck definiert:

. Gegenkathete a y
sina = —— = -— 1
Hypothenuse c .
Ankathete b
cosq¢y = ————— = -
Hypothenuse c P
Gegenkathete a afc sina
tana = ——— = —=-—"— =
Ankathede b b/e  cosu Hypotenuse
a | Gegenkathete
. Ankathete b b/c cosa 1
coto = _—mmmm = —_——= — = = o
Gegenkathede a afc sina tana a b X
Ankathete |1

Fiir beliebige Winkel = werden die trigonometrischen Funktionen mit Hilfe des Einheits-
kreises definiert.

90°

.
S — ’
tana
1
\ |sina

77/ a 0 bzw 27

180° cosa 0° bzw 360°
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6.6.2 Zusammenhdnge

Es gelten folgende niitzliche Gleichungen:

sin(z + 7) = —sin(z) und cos(z + 7) = —cos(z)
. T T .

sin(x + 5) = cos(x) und cos(x + 5) = —sin(x)

sin(—x) = —sin(2) und cos(—x) = cos(x)

sin?x +cos?r =1

sin(z £+ y) = sin(x)cos(y) £ sin(y)cos(x)

cos(z + y) =cos(x)cos(y) F sin(x)sin(y)

sin(2x) = 2sin(x)cos(x)

cos(2x) =cos?(x) — sin?(x)

tan(z) £tan(y)
1 F tan(z)tan(y)

tan(x £ y) =

6.6.3 Allgemeine Sinus- und Kosinusfunktion
Bei der Beschreibung von (mechanischen, elektromagnetischen) Schwingungsvorgéngen be-
ndtigt man Sinus- und Kosinusfunktionen in der allgemeinen Form:

y = a-sin(bzx + ¢)

y = a-cos(bzx + ¢)
Die Parameter a,b,c mit a > 0 und b > 0, bewirken gegeniiber den elementaren Sinus- und
Kosinusfunktionen y =sinz bzw. y =cosz folgende Anderung:

y = a-sin(bz + ¢) | Periode: p="
1. Nullstelle Tg=—-

Wertebereich —a<y<a

y = a-cos(bx + ¢) | Periode: p=—
1. Maximum: &, = —-—

Wertebereich: —a <y <a
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Anwendungsbeispiel: harmonische Schwingung eines Federpendels
Bei der Schwingung eines Federpendels kann die Auslenkung y als Sinusschwingung abhéangig
von der Zeit t, betrachtet werden.
y = Asin(wt + @)
Dabei bedeuten:

A Amplitude, d.h. maximale Auslenkung (Ymaz)
w Kreisfrequenz der Schwingung
% Phase
2r . .
T = — st die Periodendauer (Schwingungsdauer)
w
ty = . Phasenverschiebung
w

6.6.4 Darstellung der Sinusschwingung im Zeigerdiagramm

Eine Sinusschwingung vom Typ
y = Asin(wt + ¢)
lasst sich durch einen Zeiger mit

Liange A
Winkel ¢

symbolisch darstellen.
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Uberlagerung gleichfrequenter Sinuschwingungen
Nach dem Superpositionsprinzip der Physik, entsteht bei der Uberlagerung zweier gleich-
frequenter Sinusschwingungen
y1 = Assin(wt + 1) und yo = Agsin(wt + p3)
eine resultierende Schwingung gleicher Frequenz
y = Asin(wt + ¢)

Die Amplitude A und der Phasenwinkel ¢ der resultierenden Schwingung lassen sich
zeichnerisch im Zeigerdiagramm ermitteln.

Der Zeiger der resultierenden Schwingung ergibt sich durch vektorielle Addition der beiden
anderen Zeiger

Y2

n

Ergebnis der Uberlagerung

Die Uberlagerung zweier gleichfrequenter Sinusschwingungen
y1 = Aisin(wt + 1) und y2 = Agsin(wt + ¢2)

ergibt eine resultierende Schwingung gleicher Frequenz
y = Asin(wt + @)

mit

A= /A3 + A3+ 241 Agcos(pz — 1)

und
Aqsing + Assings

t p—
any Ajcospi + Aacospo
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6.7 Arkusfunktionen

Die Arkusfunktionen sind die Umkehrfunktionen der trigonometrischen Funktionen. Grund-
sdtzlich lassen sich die trigonometrischen Funktionen nicht umkehren, da sie periodisch
sind. Beschrankt man sich jedoch auf gewisse Intervalle, in denen die Funktionen streng
monoton verlaufen, so sind sie diesbeziiglich umkehrbar.

Die Umkehrfunktionen werden als Arkusfunktionen bezeichnet. Ihre Funktionswerte
sind im Bogenmaf} dargestellte Winkel.

6.7.1 Arkussinus & Arkuscosinus

Die Arkussinusfunktion y =arcsin(z) ist die Umkehrfunktion der auf das Intervall

—g <z< g beschriankten Sinusfunktion y =sin(z).

Die Arkuscosinusfunktion y =arccos(x) ist die Umkehrfunktion der auf das Intervall
0 < z < 7 beschrénkten Kosinusfunktion y =cos(z).

"y = arccos(z)
Y
2
1_-~\\ Y = .\‘ill(.l‘) Y= (j()g(;];) ,/’—-
11
0
0 X 0 1 2
xz
1] .
-2 y = arcsin(x)
-1t -T/2 1
y =sin(x) y =arcsin(z) y =cos(z) | y =arccos(z)
. . T T
Definitionsbereich —3 <z< 5 —1<zx<1 0<z<m —1<z<1
. m T
Wertebereich -1<y<1 —§§y§§ —-1<y<1 0<y<m
Nullstellen 9 =0 zog=0 To=7% o =1
Monotonie s. m. steigend | s. m. steigend || s. m. fallend | s. m. fallend
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6.7.2 Arkustangens & Arkuscotangens

Die Arkustangensfunktion y = arctan(z) ist die Umkehrfunktion der auf das Intervall

m I
—— < x < — beschréankten Tangensfunktion y =tan

2 2

().

Die Arkuscotangensfunktion y = arccot(x) ist die Umkehrfunktion der auf das Inter-
vall 0 < z < 7 beschrénkten Kotangensfunktion y =cot(z).

Y
tan(z) _ +
1 arccot(x) ~~‘~\
’ |
I cot(x) ’
27 73'7r - 7517«‘ 3T 77 %71' 2I7r x } t t t } I~~-I—-—I--
L1t -4 -3 -2 -1 1 2 3 4 7
/_2
arctan(z) a7
y =tan(x) y =arctan(x) y =cot(x) y =arccot(x)
. . T T
Definitionsbereich —3 <z< 5 —o <y <o 0<z<m —oc0o <y < oo
. 7 T
Wertebereich —o0o<y< > —§<y<§ —0 <y <o 0<y<m
Nullstellen x0=0 9 =20 Ty =% keine
Monotonie s. m. steigend | s. m. steigend || s. m. fallend | s. m. fallend

6.7.3 Trigonometrische Gleichungen

Unter einer trigonometrischen Gleichung versteht man eine Gleichung, bei der die Unbekannte x
in den Argumenten trigonometrischer Funktionen auftritt (z.B. sin(2z)

Es gibt hierzu kein allgemeines Losungsverfahren.

6.8 Exponentialfunktionen

Funktionen vom Typ

y=a® mit a >0und a #1

heiflen Exponentialfunktionen.

Beispiele
° y = 2:17
1\
- ()
[ ) y = 6.1}

= 3cos(z)).
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Anwendungsbeispiele

« Abklingfunktion y = ¢~ mit a > 0,\ > 0
o Sittigungsfunktion y = a(1 — e~*) mit a > 0, A > 0

e aperiodischer Schwingungsvorgang

Der aperiodische Schwingungsvorgang tritt ein, wenn ein schwingungsfihiges System
infolge zu grofler Reibung zu keiner echten Schwingung mehr fihig ist, sondern sich

asymptotisch der Gleichgewichtslage nahert.
y = 10e™2 — 10e=* fiir t > 0
¢ Gauf}-Funktion

y:e*””2 mit z € R

Die Gauf-Funktion spielt eine wesentliche Rolle in der Wahrscheinlichkeitsrechnung.

6.9 Logarithmusfunktionen

Die Logarithmusfunktion y =log,«x ist die Umkehrfunktion der Exponentialfunktion

y=a* mita > 0,a # 1.
spezielle Logarithmen 2]

natiirl. Logarithmus Inx =log.x

Zehnerlogarithmus  lgz =logiox 0

Zweierlogarithmus Ibx =logsx ]

Rechenregeln fiir Logarithmen

log,(uv) =logg(u)+loge(v)
log, (E> =log,u—log,v
v

log,u™ = nlog,u
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6 Funktionen

6.10 Hyperbelfunktionen

Die Hyperbelfunktionen sind spezielle Kombinationen aus den beiden e-Funktionen y = e*
und y = e~ %, die in dieser Gestalt hdufig in den Anwendungen vorkommen. So beispielsweise
der Kosinus hyperbolicus im Briickenbau. Er beschreibt eine Kettenlinie, die immer dann
entsteht, wenn eine ideale Kette in zwei Punkten aufgehdngt wird und im Schwerefeld

durchhangen kann.

Definition:

Sinus hyperbolicus: y =sinh(z) = € _26
xX —T
Kosinus hyperbolicus: y =cosh(x) = ere’
hyperbol h(z) = &
Tangens erbolicus: =ta = —
ngens hyperbolicu Yy nh(z) pr—
X —T
Kotangens hyperbolicus: y =coth(z) = %
et —e

Die Hyperbelfunktionen heiflen deshalb so, da die Punkte (cosh(a), sinh(a)) auf der Hyperbel
x? — 3% = 1 liegen, dhnlich wie man auch Sinus und Cosinus Kreisfunktionen nennt, weil
alle Punkte (cos(a), sin(a)) auf dem Einheitskreis liegen

\

y=cosh(x)

y=sinh(z) )
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Zusammenhange zwischen den Hyperbelfunktionen

i) - 2
_cosh(z) 1
coth(z) ~ sinh(z)  tanh(z)

sinh(z £y) sinh(x) - cosh(y) £ cosh(z) - sinh(y)

cosh(x £y) = cosh(z) - cosh(y) + sinh(z) - sinh(y)

_ tanh(xz) & tanh(y)
14 tanh(z) - tanh(y)

tanh(x £+ y)

Weitere Zusammenhange

e cosh?(z)—sinh?(z) =1

o sinh(2z) = 2sinh(z)-cosh(z)
e cosh(2x) =sinh?(z)+cosh?(z)
x)

x)

)
)
o e” =cosh(x)+sinh

(
(

o €% =cosh(x)=+sinh
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6.11 Areafunktionen

Die Umkehrfunktionen der Hyperbelfunktionen heiflen Areafunktionen. Der Name Area
rihrt daher, da sich die Umkehrfunktion des Kosinus hyperbolicus als Fléche (Area) deuten
lasst.

Die Hyperbelfunktionen sinh, tanh und coth sind streng monoton und damit umkehrbar.
Die Funktion cosh muss auf ein Teilintervall (x > 0) eingeschrinkt werden, damit sie
ebenfalls umkehrbar ist.

Definition:

Die Umkehrfunktionen der Hyperbelfunktionen sinhz, coshz eingeschrankt auf x > 0,
tanhz und cothz sind:

Areasinus hyperbolicus: y =arsinh(x)
Areakosinus hyperbolicus: y =arcosh(x)
Areatangens hyperbolicus: y =artanh(x)

Areakotangens hyperbolicus: y =arcoth(z)

arsinh(z)
2__
1t arcosh(z)
——t—t— ——t——+— 2T
-4 -3 -2 -1 1 2 3 4 7
=1+ 1+
_2_— } g } } + }
-1 1 2 3 4 5 7




KAPITEL 7

Komplexe Zahlen

7.1 Einfithrung

Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wur-
zeln negativer Zahlen berechnet werden koénnen. Dies gelingt durch Einfithrung einer neuen
Zahl i als Losung der Gleichung i2 = —1. Diese Zahl i wird imaginire Einheit
bezeichnet.

Beispiel:

1. 22—42+4+3=0

_ P P2
pg-Formel: 22 + p-x 4+ ¢ = 0 mit Losungen: Ty =—F =L (7> —q

2
:>a:1/2:— ,/ —3_21,/ —2 S 3-24 V1
=Ty =2+1
2. 224+ 22 +2=0
= ayp=—1+(-1)2-2=-1+V-1
Es exisitert keine reelle Losung, denn es gibt keine reelle Zahl w € R mit w? = —1.

Setzt man allerdings w =i -1 = w?= (z . \ﬁ)2 =i 1=-1
Es gibt also zwei komplexe Losungen z = —1 + w
r1=—-14iund 2o = —-1—1

Komplexe Zahlen werden meist in der Form
z=a-+1b

dargestellt, wobei a und b reelle Zahlen sind und ¢ die imagindre Einheit ist. Auf die so
dargestellten komplexen Zahlen lassen sich die iiblichen Rechenregeln fiir reelle Zahlen
anwenden, wobei stets 2 durch —1 ersetzt werden kann.

In der Elektrotechnik wird als Symbol statt ¢ ein j benutzt, um Verwechslungen mit der
Stromstérke zu vermeiden.

Fir die Menge der komplexen Zahlen wird das Symbol C verwendet.
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7 Komplexe Zahlen

Der so konstruierte Zahlenbereich der komplexen Zahlen hat eine Reihe vorteilhafter
Eigenschaften, die sich in vielen Bereichen der Natur- und Ingenieurwissenschaften als
duflerst niitzlich erwiesen haben:

Einer der Griinde fir diese positiven Eigenschaften ist die algebraische Abgeschlos-
senheit der komplexen Zahlen. Dies bedeutet, dass jede algebraische Gleichung n-ter
Ordnung

az™ +al~1z" 4 .+ a1+ ag =0

iiber den komplexen Zahlen genau n Losungen besitzt, was fiir reelle Zahlen nicht
gilt. Diese Eigenschaft ist Inhalt des Fundamentalsatzes der Algebra.

Ferner ist jede einmal komplex differenzierbare Funktion von selbst beliebig oft
differenzierbar, anders als in der Mathematik der reellen Zahlen.

Ein weiterer Grund ist ein Zusammenhang zwischen den trigonometrischen Funktionen
sin und cos mit der Exponentialfunktion, der iber die komplexen Zahlen hergestellt
werden kann.

Die Integraltransformationen Fourier-Transformation, Laplace-Transformation und
z-Transformation, die z.B. in der Regelungstechnik Anwendung finden sind Transfor-
mationen im komplexen Raum

Schliesslich ermoglichen die komplexen Zahlen eine vereinfachte Beschreibung von
Phasenverschiebungen in der Elektrotechnik

7.2 Definitionen
7.2.1 Zahlen
natiirliche Zahlen N = {1,2,3,..}
natiirliche Zahlen mit Null Ny = {0,1,2,3,...}
ganze Zahlen z = {.-2,-1,0,1,2,...}
rationale Zahlen Q = {ZInmeZ}
= { endliche und periodische Dezimalbriiche }
reelle Zahlen R = { endliche und unendliche Dezimalbriiche }
komplexe Zahlen C = {a+ib|abeR}

Komplexe Zahlen werden typischerweise durch z dargestellt.
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7.2.2 Komplexe Zahlen

Komplexe Zahlenebene:

Die Menge der reellen Zahlen lésst sich durch Punkte auf einer Zahlengeraden veranschau-
lichen. Die Menge der komplexen Zahlen lasst sich als Punkte in einer Ebene darstellen.
Diese Ebene wird durch 2 Achsen aufgespannt:

Die reelle Achse Re und die imagindre Achse Im.

Die Teilmenge der reellen Zahlen liegt auf der waagrechte Achse Re, die Teilmenge der
imagindren Zahlen, d.h. Zahlen ohne realen Anteil liegen auf der senkrechten Achse Im.
Eine komplexe Zahl besitzt dann die horizontale Koordinate a und die vertikale Koordinate b.

Im
z=a+1ib
b
Re
0 a

Imagindre Einheit:

Die spezielle komplexe Zahl mit Abstand 1 vom Nullpunkt auf der imagindren Achse wird
imaginédre Einheit ¢ genannt: und es wird festgelegt:
2 =-1

Mit Hilfe der imagindren Einheit l4sst sich jede komplexe Zahl z darstellen durch:

‘z:aﬁ—ibmit a,b €R

Real- und Imaginarteil:

Ist z =a+1ib € C, so heif3t:

a =Re(z) Realteil von z
b =Im(z) Imaginérteil von z

Konjugiert komplexe Zahl
Fir z=a+1 € Cist
Z=a—1b

die konjugiert komplexe Zahl.
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Betrag von z
Der Betrag einer komplexen Zahl z ist definiert durch

2] = \Ja2 + 82 = [z

und entspricht ihrem Abstand in der komplexen Zahlenebene vom Nullpunkt. Ist die Zahl z
eine reelle Zahl, also ist b = 0, so ist wie gewohnt |z| = Va2 = |a|.

Beispiel:

{z € C| |z| = 1} entspricht dem Einheitskreis um den Ursprung in der komplexen Zahlenebene.

Im(z)
z = cosp + 1 -sin ;
) f’a Tk _ Einheitskreis
) . \\\ |Z| =1
ol = eos(@)? +sin(e)2 =1 /) \
o 1

\\ Re(2)

T 17

Polarform einer komplexen Zahl

Statt komplexe Zahlen in kartesischen Koordinaten zu beschreiben, kann man auch polare
Koordinaten verwenden.

In der Mathematik versteht man unter einem  Polarkoordinatensystem ein zweidi-
mensionales Koordinatensystem, in dem jeder Punkt auf einer Ebene durch einen Winkel
und einen Abstand definiert werden kann.

Das Polarkoordinatensystem ist hilfreich, wenn sich das Verhéltnis zwischen 2 Punkten
leichter durch Winkel und Abstédnde beschreiben lisst, als durch kartesische Koordina-
ten.

Die komplexe Zahl z = x + iy wird in Polarform durch

r, den Abstand zum Ursprung in der komplexen Ebene und
v, den Winkel zur reellen Achse
angegeben. Es ist dann:

=

zZ = rCcosp + 1 - rsing

z = rcosy + 1 - rsing

rsing

Ublicherweise nennt man 7 hier den Betrag von z und den Winkel ¢ das Argument (oder
auch die Phase) von z.
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Umrechnung kartesische Koordinaten

- Polarkoordinaten

gegeben:

1. | z=a+iy r\/m2+yQundap{

x
arccos(—) fir y>0
”

farccos(f) fir y<0

2. [ rund ¢ z = r{cos +isinp)

Beispiele:

1. 2=1+4iV3 = r=4/124(v/3)? =2 und ¢ =arccos(}) =

2
3
4

z=—-1+4+iV3

L z=-1+4/3 = r=+1+3=2und ¢ =arccos(—3) =
cz=-1-4/3 = r=y1+3=2und ¢ = —arccos(—3) =

. z=1-iV3 = r=/1+3=2und ¢ = —arccos(3) =

z2=14+1i/3
Im(z)

z=—-1—14V3

z2=1—1iV3
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7 Komplexe Zahlen

7.3 Grundrechenoperationen

Fir die komplexen Zahlen sind die Grundrechenarten definiert.
Es seien im Folgenden z; = x1+i-y; und 29 = z9+i-yo € Cund k € R

7.3.1 Addition

21 +29 = x1 4y + 2+ 1y
= @1 +a2+i(y +y2)
Beispiel:
(2—i)+ (=1+2i) =

7.3.2 Multiplikation mit einem Skalar

kzxy = k(a;l -+ iyl)
= kxi1+i-k-
Beispiel:
(1 +414) =

7.3.3 Multiplikation

zize = (a1 +iy1)(x2 +iy2)
= 1@+ iy12 + iypr1 + Y1y
= (z122 — y1y2) + i(y172 + y2u1)
Beispiel:
(2414)(3—2i) =6 —1i— 2% =

7.3.4 Division
Fir z # 0 ist:

2wty
22 To — Y2
(z1 + iy1)(z2 + iy2)
(z2 — iy2) (w2 +iy2)
T1T2 — Y1y2 + i(y172 + Yar1)
¥3 +y3

O T1T2 —Y1y2 | . Y1%2 + Yad
= T Lp T e
|22] |22]
Beispiel:
241
1—2
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7.3.5 Graphische Darstellung der Grundrechenoperationen

Addition

Die Addition komplexer Zahlen entspricht der Vektoraddition.
Im 21+ 29

2o = a9 + ibsy

z1 = a1 +iby

Multiplikation

Die Multiplikation zweier komplexer Zahlen in der komplexen Ebene entspricht einer
Drehstreckung | d.h. die Winkel werden addiert und die Betrage multipliziert. Dies
wird nach Einfiihrung der e-Funktion weiter unten klarer werden.

Im

Z1 22

22

21

Re

Division

Bei der Division zweier komplexer Zahlen in der komplexen Ebene werden die Winkel
subtrahiert und die Betrage dividiert.

7.3.6 Potenzieren und Wurzelziehen

Potenzieren:

Die n-te Potenz einer komplexen Zahl z = rcose-+ising berechnet sich zu:

‘ 2" = r"(cosny + isinnep) ‘

oder fiir die algebraische Form z = a + ib zu
=y (Z) a"F(ib)*

|
Dabei ist (n) S — (der Binomialkoeffizient).
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Beispiele:
1. 3=
2. it =
3. 10 =
4. i'? =
5. 133 =

Wurzelziehen:

Als die n-ten Wurzeln einer komplexen Zahl z € C bezeichnet man die Losungen der
Gleichung 2" = a.

Die n-ten Wurzeln {/z einer komplexen Zahl z = rcosy + ising berechnen sich wie folgt:

k2 2k
Q/?(cosu + isinu) fir k=0,1,2,....,n—1
n n

7.4 Funktionen komplexer Zahlen

Eine komplexe Funktion ordnet einer komplexen Zahl eine weitere komplexe Zahl zu,
also:

f:zeC— f(z)eC

In der Regelungstechnik sehr verbreitet der Betrag (Frequenzgang) einer komplexen Zahl
(Ubertragungsfunkton): |Gs| = |o + jw|:

f:Gs€C— f(|Gs]) €R

10+ 1661

Polstellen Polstellen

Nullstelle

W VRN
RO
0.1 R
S
O

7 Amplitudenverlauf

AR
\
des Frequenzganges

Darstellung des Betrages (Amplitude) einer komplexen Ubertragungsfunktion G im Fre-
quenzbereich. Technisch relevant ist nur der Abschnitt fiir o = 0 sowie fiir Frequenzen
w > 0 und spiegelt den Amplitudenverlauf dieses speziellen Ubertragungssystems wider.
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7.4.1 Potenzfunktionen

f(z) =2" = (z+iy)? = (2* —y°) +i(2zy)
f(2) =23 = (z +iy)? = 23 + 32%iy + 32i%y? + 3y = (23 — 32y?) + i 322y — 3y3)

f(z) =222 +2—-1=2(?—9?) +ilday) + o +iy— 1= (222 —2y> + o — 1) +i(4zy +y)

-1 (23— 2+1) (22 — y? — 2izy — 2)
z—1  ((22 —y2 —2) +i2xy) (22 — y2 — 2 — 2ixy)

flz) =

7.4.2 Sinus-, Cosinus- und e-Funktion

Die folgenden Funktionen sind durch die Taylor-Reihe definiert.
o f(z)=sinzfirzeC
e f(z) =cos z fiir € C
o f(z)=¢€*firzeC

7.4.3 Komplexe e-Funktion

Die komplexe e-Funktion lasst sich mit Hilfe der Eulerschen Formel (Beweis folgt spéter
mit Hilfe der Taylor-Reihen) leicht veranschaulichen.

Eulersche Formel:

e® =cos(b) +i-sin(b) fiir beR

Die Zahlen e? liegen also alle wegen

€] = [cos(b) + i-sin(b)] = \/cos?(b) + sin®(b) = 1

auf dem komplexen Einheitskreis. Die reelle Zahl b gibt das  Bogenmaf3  des Punktes
auf dem Einheitskreis an

Das Bild einer beliebigen komplexen Zahl z = a+ib unter der e-Funktion ist
e = et = ¢ . ¢ = ¢%(cos(b) + isin(b))

e” ist also ein komplexe Zahl Im
mit Abstand e® vom Ursprung

und mit Bogenmaf} b e*
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7.4.4 Anwendungsbeispiel aus der Elektrotechnik

An einem ohmschen Widerstand R wird die von der Zeit abhéngige Wechselspannung
U = Upsin(wt) angelegt (w ist die Kreisfrequenz).

u(t)
i(t)
—  }—
0 r n V ot 3n
i

Aufgrund des Ohmschen Gesetztes ergibt sich fiir die Stromstéarke

U U . .
I= B= fosm(wt) = Ipsin(wt)

Spannung und Stromstéarke sind in Phase.

u,i

Befindet sich an der Stelle des ohmschen Widerstandes R ein Kondensator mit der
Kapazitat C, so wird der Stromfluss durch die entgegengesetzte Aufladung des Kondensa-
tors zur Spannungsquelle U = Upsin(wt) begrenzt.

u,i u(t)
u i(t)
N /2
—

0 n 2m ot 3n

Zum Zeitpunkt der Maximalspannung Uy ist die Spannung am Kondensator konstant,
es fliefit in den Kondensator keine Ladung. Fillt danach die Spanung ab, so wird der
Kondensator durch einen Strom in umgekehrter Richtung entladen. Die Stromstarke
erreicht ihr Maximum, wenn sich die Spannung am schnellsten &ndert, also beim Wechsel
des Vorzeichens.

Dies bedeutet, dass die Stromstérke der Spannung um 7 voraus eilt (¢ = —7).

Die Stromstérke ldsst sich also darstellen als:
I = Ipsin(wt — §) = Igcos(wt)

Aus der Physik ist bekannt, dass die maximale Stromstérke
Ip=w-C- Uy

betrédgt. Dies ldsst sich durch komplexe Zahlen beschreiben:

Man interpretiert den Kondensator als komplexen Widerstand bzw. als _ Blindwiderstand

1 J

o= 4,6~ "

mit C Kapazitdt und w Kreisfrequenz (w = 27 f)

Die komplexe Wechselstromrechnung wird in der Elektrotechnik angewendet, um Strom-
stirke und Spannung in einem Netzwerk bei sinusférmiger Wechselspannung zu bestimmen.
Das Verhéltnis der komplexen Spannung zur komplexen Stromstérke ist eine komplexe
Konstante. Dies ist die Aussage des ohmschen Gesetzes flir komplexe Grofien. Die Konstante
wird als komplexer Widerstand bezeichnet.

Der komplexe Widerstand einer Spule im Stromkreis ist

R; = jwL  mit L Induktivitat und w Kreisfrequenz (w = 27 f) ‘

¢ =145 — Bei Induktivitdten, Strome sich verspéten.
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Anhang

8.1 Einheitskreis
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