

Agenda

- Definition
- Geschichte
- Funktion
- Aufbau
- Schlüsselmerkmale
- Chancen
- Herausforderungen & Risiken
- Anwendungsbeispiele
- Zukunftsaussichten

Video

Digital Twins in 3 Minuten erklärt - YouTube

Definition

Digitale Kopie von Anlagen, Prozessen, Produkten oder Dienstleistungen aus physischer Welt

Nutzt reale Daten zur virtuellen Rekonstruktion (Avatar)

Physisches Objekt muss nicht existieren

Erkenntnisse gewinnen, Effizienz steigern, Probleme aus Realität lösen

→ Durch "Internet of Things" möglich, da es Daten aus physischer Welt sammelt und an Maschinen übermittelt

Geschichte

digitalen Zwillingen

werden entwickelt

wird in weiteren

Bereichen eingeführt

hauptsächlich in der

Luft- und Raumfahrt

eingesetzt

Funktion

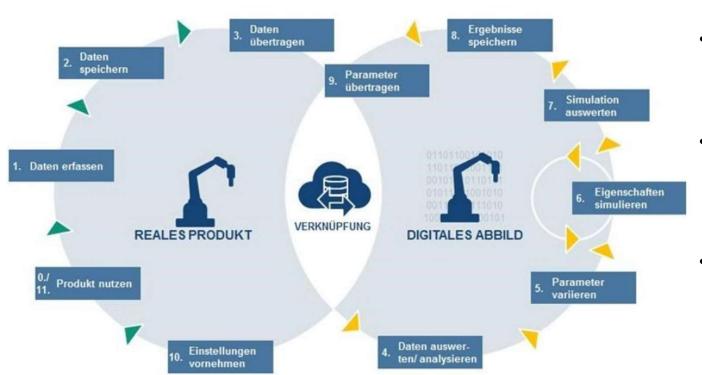
- Abbildung des gesamten Produktlebenszyklus von Entwicklung bis After-Sales
- Objekte der realen Welt werden digital nachgebildet
 - Ermöglicht Simulationen, Tests, Modellierung und Überwachung auf Basis IoT-Sensordaten
- Echtzeitdaten werden lokal oder in der Cloud gespeichert
- Bieten Interaktion und "was-wäre-wenn" -Analysen

Unterstützung der Entwicklung

- Designentscheidungen treffen
- Eigenschaften verbessern
- Schadenswahrscheinlichkeit frühzeitig verringern

Optimierung der Implementierung

- Wartungsintervalle anpassen
- Bauteile und Prozesse simulieren und verbessern


Unterschiedliche Typen

Digitaler Zwilling der Organisation:

- Ermöglicht optimierte und umfassende Planung aller Prozesse im Unternehmen
- Erhöht Datensicherheit und Datenschutz

Aufbau

- Ganzheitlicher Ansatz:
 Begleitung Produkt über gesamten
 Lebenszyklus nicht nur
 Entwicklungsphase
- Drei zentrale Bestandteile:
 - Reales Produkt
 - · Digitales Abbild
 - Vernetzung beider Welten
- Kontinuierlicher Kreislauf:
 Wiederholte Analyse und Anpassung
 führen zu fortlaufender
 Leistungssteigerung

Schlüsselmerkmale

Identität

Darstellung

Status & Alarmierung

Kontext

Interaktion

Chancen

Virtuelle Tests statt teurer Prototypen

→ spart Zeit & Material

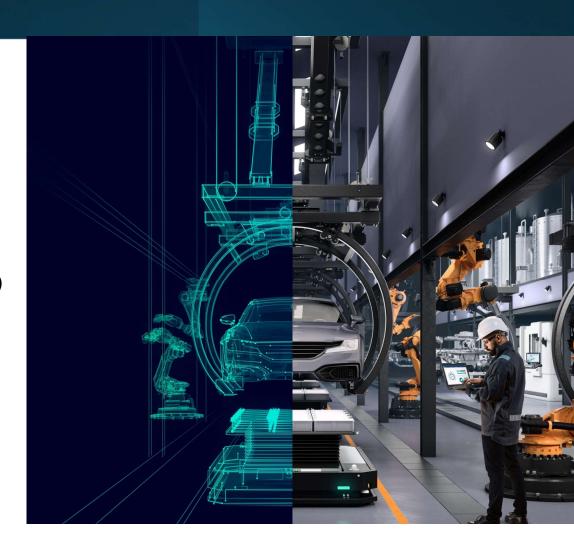
Früherkennung von Fehlern und Schwachstellen

→ höhere Produktqualität

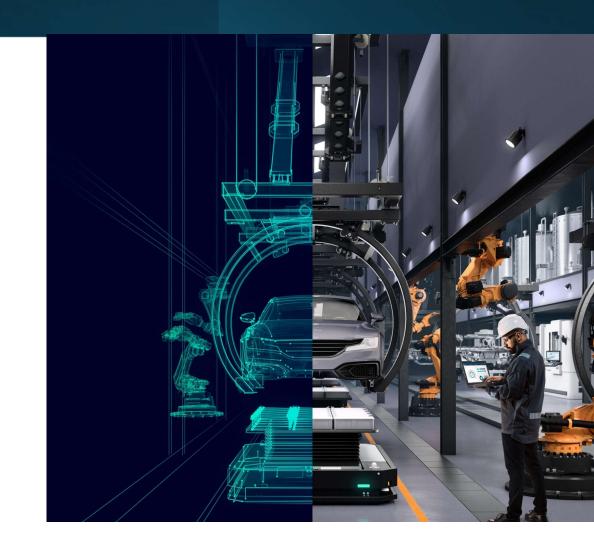
Schnellere Produktentwicklung (Time-to-Market)

→ Wettbewerbsvorteil

Vorausschauende Wartung (Predictive Maintenance)


→ weniger Ausfälle & Kosten

Kontinuierliche Optimierung durch Echtzeitdaten


→ Produkte verbessern sich im Betrieb

Nachhaltige Effizienz & geringerer Ressourcenverbrauch

→ Umwelt- und Kostenvorteile

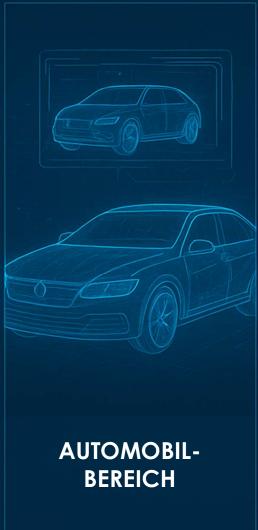
"Der digitale Zwilling bietet große Chancen – aber nur, wenn Technik, Organisation und Mensch zusammenspielen."

Herausforderungen & Risiken

Fehlende Schnittstellen

Abteilungsgrenzen

Datenschutzverletzung



Mangel an Fachpersonal

Zu hoher Aufwand

Zukunftsaussichten

Digitaler Zwilling: Warum die Zukunft der Industrie virtuell ist

