Elektrotechnik: Zusatzaufgaben 3 - Gleichstromschaltungen

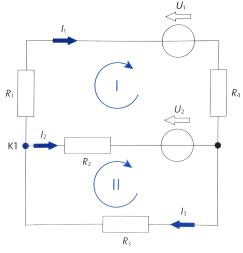
1. Aufgabe:

Berechnen Sie alle Zweigströme im Netzwerk mithilfe der Knoten- und Maschenregel, und lösen Sie das Gleichungssystem.

$$U_1 = U_2 = 60 \text{ V}$$
 $R_1 = R_2 = 3 \Omega$
 $R_3 = R_4 = 10 \Omega$

Lösung:

Aufstellen von Knoten- und Maschengleichungen:



 K_1 : $I_3 - I_2 - I_1 = 0$

 $-U_1 + U_{R_1} - U_{R_2} + U_2 + U_{R_4} = 0$ $-U_2 + U_{R_2} + U_{R_3} = 0$

Umformen der Gleichungen und Werte einsetzen:

 M_1 : $-U_1 + R_1 I_1 - R_2 I_2 + U_2 + R_4 I_1 = 0$

 $-U_2 + R_2 I_2 + R_3 I_3 = 0$ M_2 :

 $-I_1 - I_2 + I_3 = 0$ K_1 :

 $R_1 I_1 - R_2 I_2 + R_4 I_1 = U_1 - U_2$ M_1 :

 M_2 : $R_2I_2 + R_3I_3 = U_2$

$$\begin{pmatrix}
I_1 & I_2 & I_3 & E \\
-1 & -1 & 1 & 0 \\
R_1 + R_4 & -R_2 & 0 & U_1 - U_2 \\
0 & R_2 & R_3 & U_2
\end{pmatrix}$$

Die Einheiten werden während der Matrixumformung weggelassen.

$$\left(\begin{array}{ccc|c}
-1 & -1 & 1 & 0 \\
\mathbf{13} & -3 & 0 & 0 \\
0 & 3 & 10 & 60
\end{array}\right) \text{ II}$$

$$\begin{pmatrix} -1 & -1 & 1 & 0 \\ 0 & -16 & 13 & 0 \\ 0 & \mathbf{3} & 10 & 60 \end{pmatrix} \ \mathbf{13 \cdot I + II}$$

$$\begin{pmatrix} -1 & -1 & 1 & 0 \\ 0 & -16 & 13 & 0 \\ 0 & 0 & 199 & 960 \end{pmatrix} \mathbf{3} \cdot \mathbf{II} + \mathbf{16} \cdot \mathbf{III}$$

Aus der Matrix in Dreiecksform ergeben sich folgende Gleichungen:

$$-I_1 - I_2 + I_3 = 0$$

$$-16I_2 + 13I_3 = 0$$

$$199I_3 = 960A$$

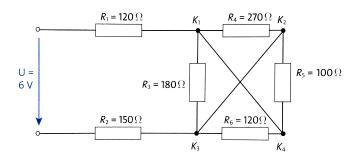
Die Gleichungen werden nun gelöst. Start mit der Einfachsten:

$$I_{3} = \frac{960}{199} A = 4.82 A$$

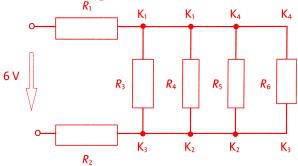
$$-16I_{2} = -13I_{3} = -13 \left(\frac{960}{199}\right) A = \frac{-12480}{199} A \quad \Rightarrow I_{2} = \frac{780}{199} A = 3.92 A$$

$$-I_{1} = I_{2} - I_{3} = 3.92 A - 4.82 A \quad \Rightarrow I_{1} = \mathbf{0.9A}$$

Berechnen Sie den Gesamtstrom folgender Schaltung:



Diese Schaltung wirkt sehr unübersichtlich und sollte umgezeichnet werden.



Die Knotenpunkte K_1 und K_4 sind miteinander verbunden, also liegen alle vier Widerstände am gleichen Knotenpunkt.

Das Gleiche ist bei den Knoten K_2 und K_3 der Fall. Die jeweils anderen Anschlüsse der Widerstände liegen auch alle zusammen an einem Knoten.

Also liegen alle Widerstände R_3, R_4, R_5, R_6 parallel.

Der Gesamtwiderstand beträgt:

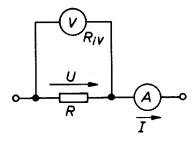
$$\frac{1}{R_{PGes}} = \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6} = \frac{1}{180 \Omega} + \frac{1}{270 \Omega} + \frac{1}{100 \Omega} + \frac{1}{120 \Omega} \Rightarrow R_{PGes} = 36.24 \Omega$$

$$R_{Ges} = R_1 + R_2 + R_{PGes} = 120 \Omega + 150 \Omega + 36.24 \Omega = 306.24 \Omega$$

$$I_{Ges} = \frac{U}{R_{Ges}} = \frac{6 \text{ V}}{306.24 \Omega} =$$
19.6 mA.

Bei einer Widerstandsbestimmung durch gleichzeitige Strom- und Spannungsmessung (spannungsrichtige Schaltung) sei U=10 V und I=1 mA. Der Innenwiderstand des Voltmeters betrage $R_{iV}=200$ k Ω .

Um wieviel Prozent weicht dieser (verfälschte) Widerstandswert vom wahren Wert ab?

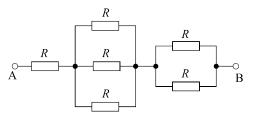


Lösung:

Für den unbekannten Widerstand R gilt nach dem Ohm'schen Gesetz $R=\frac{U}{I}=\frac{10\,V}{0,001A}=10\,k\Omega$ Da aber ein Teil des Stromes, $I_V=\frac{U}{R_{iV}}$, durch das Voltmeter und nicht durch den Widerstand fließt, gilt für den korrigierten Wert $R_{korr}=\frac{U}{I-I_V}=\frac{U}{I-\frac{U}{R_{iV}}}=10,\!526\,k\Omega$. Die Abweichung beträgt also 5,26 %.

4. Aufgabe:

Berechnen Sie den Ersatzwiderstand der angegebenen Widerstandskombinationen zwischen den Anschlussklemmen A und B (alle $R=18~\Omega$).

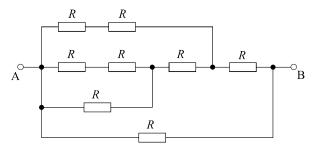


Lösung:

$$R_{AB} = 33 \Omega$$

5. Aufgabe:

Berechnen Sie den Ersatzwiderstand der angegebenen Widerstandskombinationen zwischen den Anschlussklemmen A und B (alle R=2 Ω).

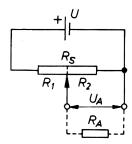


Lösung:

$$R_{AB} = 1.31 \Omega$$

Ein zunächst unbelasteter Spannungsteiler mit $R_S=200~\Omega$ wird durch Zuschalten eines Arbeitswiderstandes $R_A=100~\Omega$ belastet.

- a) In welchem Verhältnis stehen die Ausgangsspannung U_A des belasteten und des unbelasteten Spannungsteilers bei Mittelstellung des Abgriffs $(R_1 = R_2 = R_S/2)$?
- b) Berechnen Sie die jeweilige Stromstärke, wenn die Spannung der Spannungsquelle U=24 V beträgt.



Lösung:

a) Im Leerlauf (ohne Belastung) beträgt die Stromstärke durch den Spannungsteiler

$$I = \frac{\text{U}}{\text{R}_\text{S}} = \frac{\text{U}}{(\text{R}_1 + \text{R}_2)} \quad \text{und somit die Spannung am Abgriff } U_\text{A} = I \cdot \text{R}_2 = \frac{\text{U} \cdot \text{R}_2}{\text{R}_1 + \text{R}_2} = \frac{\text{U}}{2} = 12 \text{ V}.$$

Mit Belastung tritt an die Stelle von R_2 der kleinere Widerstand $R_2' = R_2 \cdot R_A / (R_2 + R_A)$ also Parallelschaltung von R_2 und R_A . Somit ist nun die Stromstärke $I' = U / (R_1 + R_2')$ und damit die Ausgangsspannung

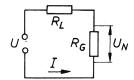
$$U_A' = I' \cdot R_2' = \frac{U}{R_1 + \frac{R_2 \cdot R_A}{R_2 + R_A}} \cdot \frac{R_2 \cdot R_A}{R_2 + R_A} = \frac{U}{1 + \frac{R_1 \cdot (R_2 + R_A)}{R_2 \cdot R_A}} = \frac{U}{3} = 8 \ V.$$

b) Die Stromstärken durch den Spannungsteiler im Leerlauf und mit Belastung sind:

$$I = \frac{U}{R_S} = 120 \text{ mA}$$
 $I' = \frac{U}{R_1 + \frac{R_2 \cdot R_A}{R_2 + R_A}} = 160 \text{ mA}$

Ein elektrisches Gerät mit Nennleistung $P_N=2$ kW und Nennspannung von $U_N=230$ V wird über eine Kupferleitung von 2.5 mm² Leitungsquerschnitt (spezifischer Widerstand $\rho_{Cu}=0.0178\Omega$ mm²/m) und 125 m Länge an eine Spannungsquelle mit U=230 V angeschlossen. Berechnen Sie

- a) den Leitungswiderstand,
- b) den Gerätewiderstand,
- c) die Stromstärke und
- d) die Nutzleistung am Gerät.



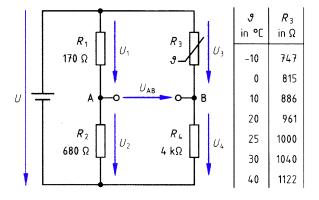
Lösung:

- a) Mit der Länge der Anschlussleitung L = 250 m (Hin- und Rückleitung) errechnet sich der Leitungswiderstand zu $R_L = \rho_{Cu} \cdot L / A = 1,78 \Omega$. R_L wirkt wie ein Vorwiderstand.
- b) Der Gerätewiderstand ergibt sich zu $R_G = U_N^2 / P_N = 26,45 \Omega$.
- c) Als Stromstärke erhält man $I = U / (R_G + R_L) = 8,15$ A und
- d) die Nutzleistung des Gerätes $P_G = R_G \cdot I^2 = 1757 \text{ W}$.

8. Aufgabe:

Gegeben ist eine Brückenschaltung mit einem einstellbaren temperaturabhängigen Widerstand R_3 .

Berechnen Sie die Temperatur, für welche die Brückenschaltung abgeglichen ist.



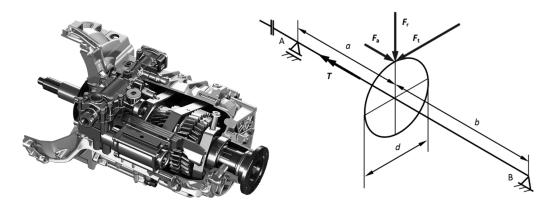
Lösung:

Es gilt die Abgleichbedingung: $\frac{R_1}{R_2} = \frac{R_3}{R_4}$

$$\frac{170 \ \Omega}{680 \ \Omega} = \frac{R_3}{4000 \ \Omega} \implies R_3 = \frac{170 \ \Omega}{680 \ \Omega} \cdot 4000 \ \Omega = 1000 \ \Omega$$

Ein 1000-Ohm-Widerstand gleicht die Brückenschaltung ab, d.h. bei einer Temperatur von 25 $^{\circ}$ C erfüllt der temperaturabhängige Widerstand die Funktion.

An einer Getriebewelle, die auf Torsion (F_t, M_t) , Biegung (F_b) und Axialbelastung (F_a) ausgelegt ist, soll im Fahrversuch die Widerstandsänderung eines DMS von $R=600~\Omega$ aus Chrom-Nickel-Draht (80% Cr und 20% Ni) mit k-Faktor 2 bei einer Dehnung $\epsilon=1~\mu\text{m/m}$ ermittelt werden.



Lösung:

Es gilt:
$$\frac{\Delta R}{R} = k \cdot \epsilon$$

$$\Rightarrow \Delta R = R \cdot k \cdot \epsilon = 600 \ \Omega \cdot 2 \cdot 10^{-6} = 1.2 \ \text{m}\Omega$$

