Elektrotechnik: Übungsblatt 5 - Kondensator

1. Aufgabe:

Erläutern Sie die Bedeutung der Eigenschaft 'Kapazität' zunächst für einen Plattenkondensator, dann für beliebigen Körper.

2. Aufgabe:

Vergleichen Sie die Kapazität zweier Plattenkondensatoren mit Platten gleicher Größe, aber unterschiedlichem Abstand.

Welcher besitzt die größere Kapazität?

Erklären Sie dies anschaulich, z.B. mittels Betrachtung des Potentials.

3. Aufgabe:

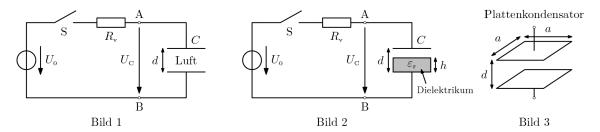
Wie groß ist die Kapazität eines Plattenkondensators mit zwei quadratischen Platten der Seitenlänge 0.5 m und einem Abstand von 1 mm?

4. Aufgabe:

Ein Dielektrikum mit einer relativen Dielektrizitätskonstante von $\epsilon_r = 12$ hält eine elektrisches Feld von $3 \cdot 10^7$ V/m aus. Mit diesem Dielektrikum soll ein Kondensator mit $0.1~\mu\text{F}$ gebaut werden, der eine Spannung von 2000 V aushält.

- a) Wie groß muss der Plattenabstand gewählt werden?
- b) Welchen Flächeninhalt müssen die Platten haben?

5. Aufgabe:


Zwei Kondensatoren $C_1=0.4~\mu\mathrm{F}$ und $C_2=600~\mathrm{nF}$ werden parallel geschaltet. Wie groß ist die Gesamtkapazität, die Ladung auf den beiden Kondensatoren und die gesamte Ladung bei $U=5~\mathrm{V}$.

6. Aufgabe:

Zwei Kondensatoren mit $C_1 = 2 \mu \text{F}$ und $C_1 = 4 \mu \text{F}$ sind in Reihe geschaltet und liegen an einer Gesamtspannung U = 18 V wie groß sind an jedem Kondensator die gespeicherten Ladungen und die anliegenden (Teil-)spannungen.

7. Aufgabe:

Gegeben ist folgendes Gleichstromnetzwerk mit einem Plattenkondensator (Bild 1):

Die Kondensatorplatten sind quadratisch ausgeführt (Bild 3). Folgende Daten sind bekannt:

$$U_0 = 1000 \,\mathrm{V}, \quad R_{\rm v} = 8 \,\mathrm{M}\Omega, \quad d = 5 \,\mathrm{cm}, \quad h = 3 \,\mathrm{cm}, \quad a = 100 \,\mathrm{cm} \quad \varepsilon_{\rm r, Dielektrikum} = 13.6$$

Für die Aufgaben werden nacheinander vier Schaltvorgänge durchgeführt:

Vorgang 1: Zuerst wird der Schalter S geschlossen und damit der Plattenkondensator durch die Gleichspannungsquelle U_0 aufgeladen.

Vorgang 2: Nach dem vollständigen Aufladen des Kondensators wird der Schalter wieder geöffnet.

Vorgang 3: Bei geöffnetem Schalter wird anschließend ein plattenförmiges Dielektrikum zwischen die Kondensatorplatten geschoben (Bild 2).

Vorgang 4: Nachdem das Dielektrikum zwischen die Platten geschoben wurde, wird der Schalter wieder geschlossen.

Hinweise: Für die Berechnungen ist die Kondensator-Anordnung als ideal anzunehmen; Randeffekte sowie Verluste im Dielektrikum können vernachlässigt werden. Alle Feldlinien verlaufen parallel zueinander und senkrecht zwischen den Kondensatorplatten.

- 1. Berechnen Sie die Kapazität C des Kondensators ohne Dielektrikum!
- 2. Wie groß ist die Spannung $U_{\rm C}$ zwischen den Klemmen A und B nach dem Einschieben des Dielektrikums (nach Vorgang 3)?
- 3. Berechnen Sie die Energieinhalte im Kondensator vor und nach dem Einschieben des Dielektrikums!
- 4. Welche Ladungsmenge fließt zusätzlich auf die Kondensatorplatten, nachdem der Schalter S wieder geschlossen wurde (nach Vorgang 4)?
- 5. Zeichnen Sie qualitativ den Verlauf des Kondensatorstroms $i_{\rm C}(t)$ und der Kondensatorspannung $u_{\rm C}(t)$ für den Schaltvorgang 4! Geben Sie auch die Anfangs- und die Endwerte der Verläufe auf der y-Achse an!